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Each phosphoinositide (PI, also known as phosphatidylinositol

phosphate, polyphosphoinositide, PtdInsP or PIP) species is

partitioned in the endomembrane system and thereby

contributes to the identity of membrane compartments.

However, membranes are in constant flux within this system,

which raises the questions of how the spatiotemporal pattern of

phosphoinositides is established and maintained within the

cell. Here, we review the general mechanisms by which

phosphoinositides and membrane trafficking feedbacks on

each other to regulate cellular patterning. We then use the

specific examples of polarized trafficking, endosomal sorting

and vacuolar biogenesis to illustrate these general concepts.
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Introduction
Membrane identities are acquired by the combined pres-

ence of specific lipids and proteins on each membrane. For

example, small GTPases (Rab, Rho and Arf) are important

contributors of organelle identity [1]. On the lipid side,

major determinants of membrane identities are phosphoi-

nositides, which are anionic phospholipids with an inositol

head group that can be phosphorylated at various positions

ontheirpolarhead (Figure 1a) [2].Both groups ofmolecules

also coordinate trafficking between different membranes

and specific mechanisms are in place to ensure their correct

spatiotemporal distribution. Here, we review the mecha-

nisms by which phosphoinositides contribute to both mem-

brane trafficking and organelle identity. Since the general

mechanisms linking anionic phospholipids and trafficking

are shared between all eukaryotes, we first describe these

generic concepts, including plantexamples when available.

We then describe the subcellular localization of phosphoi-

nositides in plants. Finally, to illustrate the aforementioned

concepts, we use the examples of vacuolar sorting and

polarized trafficking, notably in the context of tip growth.

General concepts linking phosphoinositides
and membrane trafficking in eukaryotes
Importance of phosphoinositide cyclical and cascade

regulation

Phosphatidylcholine and phosphatidylethanolamine con-

stitute more than 60% of total phospholipids, followed in

abundance by phosphatidylinositol, phosphatidylgly-

cerol, phosphatidylserine, and phosphatidic acid. Phos-

phatidylinositol is mainly found in the luminal side of the

Endoplasmic Reticulum but a minor amount is exposed

on organelle cytosolic leaflets, where it is phosphorylated

into various phosphatidylinositol phosphate species (so

called phosphoinositides or PIs). In all eukaryotes, phos-

phoinositides are quantitatively minor lipids, accounting

for less than one percent of total phospholipids. Yet, they

are set apart from other lipids because they are rapidly

interconverted into one another by the action of lipid

kinases and phosphatases, allowing their spatiotemporal

control by cyclical regulation (Figure 1b) [1]. The com-

bined action of kinases and phosphatases produces up to

five phosphoinositides in plants, four of which have been

involved in membrane trafficking (PI(3)P, PI(4)P, PI(4,5)

P2 and PI(3,5)P2) (Figure 1c) [2,3]. In plants, PI(4)P

constitutes about 80% of phosphoinositides, followed in

abundance by PI(4,5)P2, PI(3)P and PI(3,5)P2.

Phosphoinositides are not only cycling between two

states, but can cascade from one species to another and

then another. In animals, a classical example of phosphoi-

nositide cascade happens along the endocytic pathways

[4]. This PI cascade starts from PI(4,5)P2 at the plasma

membrane (PM), utilizes transient accumulation of PI(4)

P and PI(3,4)P2 during endocytosis, and leads to accumu-

lation of PI(3)P in early endosomes and then PI(3,5)P2 in

late endosomes [4]. By contrast, two shorter, largely

independent phosphoinositide cascades exist in plants

that are centered on early (trans-Golgi Network/Early

Endosomes; TGN/EE) and late (Late Endosomes/Multi-

vesicular Bodies; LE/MVB) endosomes (Figure 1c). Such

cascades are a central theme in membrane trafficking as

they allow membrane identity to evolve dynamically

during the course of trafficking [1].

Phosphoinositides act as biochemical landmarks to

recruit trafficking regulators

By analogy to the histone code, phosphoinositides gener-

ate a ‘lipid code’ that specifies membrane identity. The
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Figure 1
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The phosphoinositide code and interdependent relationship with small GTPases. (a) Schematic representation of phosphoinositides. Possible

phosphorylation on the third, forth and/or fifth position on the inositol ring are indicated by arrows. Note that PI kinases or phosphatases act on these

phosphorylation, while PI-PLC cut PIs below the phosphate group to release DAG and soluble inositol. Phosphorylations are represented by orange
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three corner stones of the histone code hypothesis are

the presence of proteins that can create, remove and read
marks on histones (so called writer, eraser and reader

modules). Lipid kinases and phosphatases represent

writer and eraser molecules in such lipid code hypothesis.

Phosphoinositide-specific phospholipases C (PI-PLCs)

constitute another eraser module that terminates the PI

cycle by metabolizing PI(4)P and PI(4,5)P2 into Diacyl-

glycerol (DAG) and soluble inositols (Figure 1b, note

that the function of soluble inositols in endomembrane

trafficking are not reviewed in this paper). The reader

module is embodied by the presence of stereospecific

lipid binding domains in many proteins (Figure 1b) [5].

Most trafficking regulators possess themselves such

domains, which couple membrane recruitment and

trafficking regulation. For instance, the three trafficking

regulators AtSORTING-NEXINs (AtSNXs), PLEK-

STRIN-HOMOLOGY1 (AtPH1) and FYVE-DOMAIN-

PROTEIN1/FYVE-DOMAIN-PROTEIN-REQUIRED-

FOR-ENDOSOMAL-SORTING1 (FYVE1/FREE1) are

targeted to PI(3)P-containing endosomes via a PHOX

(PX), PLECKRTSIN-HOMOLY (PH) or Fab1-YOTB-

Vac1-EEA1 (FYVE) domain, respectively [6–9,10��].

Phosphoinositides cooperate with small GTPases to

drive membrane traffic

Phosphoinositides are intimately linked with small

GTPases (e.g. Rab, Arf and Rho), which are themselves

master regulators of membrane trafficking [1]. Many

phosphoinositide writer/eraser modules are effectors of

activated GTPases, notably Rab proteins (Figure 1d).

GTPase activities are also regulated by phosphoinositides

and numerous GTPase-activating-proteins (GAPs) and

GTPase-exchange-factors (GEFs) contain a lipid binding

domain that drives their membrane association

(Figure 1e). In addition, there are many examples of

proteins that are recruited to a specific membrane via

the coincidence binding of a phosphoinositide and a

small GTPase (Figure 1f). For instance, RabA4b recruits

PI4Kbs to control PI(4)P production in secretory vesicles

emerging from the TGN/EE [11]. In turn, coincident

detection of PI(4)P and RabA4b in the TGN/EE targets

the PLANT-U-BOX13, which regulates the trafficking of

the pattern-recognition receptor FLAGELIN-INSENSI-

TIVE2 [12��].

Phosphoinositides influence membrane deformation

and surface charges

Phosphoinositides have a large head group that favor mem-

brane with a positive curvature, for example in the bud of

growing vesicles (Figure 2a) [13]. Anionic phospholipids

also control membrane electrostatics by modulating surface

charges in the cytosolic leaflet of membranes (Figure 2a, b)

[14].Theplant PM hasa specific electrostatic signature that

is driven by PI(4)P and recruits proteins with polybasic

sequence(s) (Figure 2b, c) [14,15�]. Interestingly, certain

trafficking regulators are recruited to membrane through

the coincident detection of curvature and electrostatics

(Figure 2d) [5,16]. In turn, some of these proteins with a

Bin-Amphyphisin-Rvs (BAR) domain, further induce

membrane deformation; linking electrostatic and curvature

regulation during trafficking [5,17]. Phosphoinositides also

recruit coat proteins, such as the Adaptor Protein (AP)

complexes involved in Clathrin-coated vesicle formation

(Figure 2e) [4], or the retromer, involved in endosome

tubulation (Figure 2f) [17,18�]. In addition, phosphoinosi-

tides recruit and activate the actin polymerization machin-

ery, which generates a motile force required for membrane

deformation and vesicle motion (Figure 2e, f) [18�,19].

The localization of phosphoinositides in plants
Studying lipid localization is complex. Endogenous lipids

are not easily tagged by fluorescent moieties, lipid fixa-

tions are difficult to achieve, and phosphoinositides may

diffuse or traffic away from their site of synthesis [2]. Yet,

the localization of phosphoinositides in plants is getting

clearer (Figure 3a), thanks to the combinatorial use of: (i)

genetically encoded biosensors (i.e. fluorescent protein

fused with stereospecific lipid binding domain), (ii)

mutants impaired in phosphoinositide homeostasis, and

(iii) localization studies of plant writer/eraser/reader pro-

teins (see Figure 3b for a summary of writer/eraser known

localization) [2,3]. Some notable differences can be noted

between plants and animals. A prime example is the

massive accumulation of PI(4)P at the plant PM

(Figure 3a); whereas in animals, PI(4)P prominently

resides in the Golgi/TGN compartments and to a lesser

24 Cell Biology 2017

(Figure 1 Legend Continued) circles. (b) Representation of the lipid code hypothesis embodied by the presence of writer, eraser and reader modules

and the phosphoinositide cycle. (c) The two phosphoinositide cascades in plants. Generic enzyme names are written in capital letter, example of

Arabidopsis proteins with proven enzymatic activities and roles in membrane trafficking are indicated in italic. (d) Schematic representation of

Rab-regulated phosphoinositide phosphorylation or dephosphorylation. (e) Schematic representation of phosphoinositide-regulated small GTPase

activation or deactivation. (f) Schematic representation of effector recruitment by coincidence binding of an activated small GTPase and a

phosphoinositide. (g) Schematic representation of phosphoinositide-regulated phosphoinositide phosphorylation or dephosphorylation. (d–g) Plant

examples are indicated in italics, and have been described in the following papers: PI4Kb [11], VAN3 [75], PUB13 [12��], FAB1A-B/PIKfyve [34]. DAG,

diacylglycerol; IP2, inositol-1-4-biphosphate; IP3, inositol-1-4-5-triphosphate; PI-PLC, phosphoinositide-dependent phospholipase C; Ptase,

phosphatase; PIP, phosphatidylinositol monophosphate; PIP2, phosphatidylinositol bisphosphate; LBD, lipid binding domain; SAC, SUPPRESSOR OF

ACTIN; RHD4, ROOT HAIR DEFECTIVE4; PI(3)P, phosphatidylinositol-(3)-phosphate; PI(4)P, phosphatidylinositol-(4)-phosphate, PI(3,5)P2,

phosphatidylinositol-(3-5)-bisphosphate; PI(4,5)P2, phosphatidylinositol-(4-5)-bisphosphate; PI(3)P5K, phosphatidylinositol-(3)-phosphate 5-kinase; PI(4)

P5K, phosphatidylinositol-(4)-phosphate 5-kinase; PI4K, phosphatidylinositol 4-kinase; PI, phosphoinositides; TGN, trans-Golgi Network; EE, Early

Endosomes; LE, Late endosomes; MVB, multivesicular bodies; GAP, GTPase Activating Protein; GEF, GTPase Exchange Factor; VAN3, VASCULAR

NETWORK3; PUB13, PLANT U-BOX13; PIKfyve, PHOSPHOINOSITIDE KINASE FYVE FINGER CONTAINING.

Current Opinion in Plant Biology 2017, 40:22–33 www.sciencedirect.com
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Figure 2

PM

highly electronegativ e

PI(3)P

PI(4)P

PI(4,5)P2

PI(4,5)P2

PM
extracellula r

lumen

cytosol

endosome
membranecytosol

electronegativ e
+ curved

neutral + curved 

intracellula r
compartment s

PI(4)P

Packing defect s

Directly influenced by phosphoinositides

 Curvature

BAR domain +ALPS

coincidence detection of
curvature and electrostatics

PI-mediated vesicule formation
(e.g. clathrin-mediated endocytosi s)

PI-mediated tubule formation
(e.g. retromer-mediated tubulation) 

Electrostatics

- - -

---- --

-

--
- -

--

-

-- -- -

(a) membrane physicochemical parameter s

(b)

(d)

electrostatic territoty in plants PM targeting by electrostatics(c)

(e) (f)

e.g. PINOID/D6PKs 

Φ Φ Φ

Current Opinion in Plant Biology

PM

el
ec

tr
os

ta
tic

 fi
el

d

cytosol

neck formation/
scission 

e.g. SNX9/dynamin

coat recruitment
e.g. AP2/clathri n

coat recruitment
e.g. SNX1,2/retromer

actin
polymerisatio n

factor
e.g. N-WASP

actin polymerisation factor
e.g. WASH

cytosol

polybasic/ 
hydrophobic

region

motio n
motion

actin

actin

Influence of phosphoinositides on physicochemical membrane parameters. (a) Membrane physicochemical properties may be conceptualized in
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PM electrostatic field. (c) Specific recruitment of proteins with polybasic/hydrophobic regions to the PM largely through PI(4)P-driven

electrostatics. Note that PA and PI(4,5)P2 are also involved in D6PK membrane association [76]. (d) Schematic representation of protein

recruitment by coincidence detection of both curvature and electrostatics (e.g. proteins containing BAR domains or specialized amphipathic

helices from the +ALPS class [5,16,17]). (e) Schematic representation of the importance of phosphoinositides in vesicle formation through the

coordination of actin polymerization, and recruitment/activation of membrane deformation components, including coat proteins and the scission
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extent at the PM [15�]. In addition, PI(3)P labels late

endosomes in plants and early endosomes in animals

[20,21]. By contrast, PI(4,5)P2 localization at the PM

and PI(3,5)P2 in LE/MVB are conserved in eukaryotes

[21,22,23�].

Phosphoinositides in endosomal sorting and
vacuole biogenesis
The central vacuole is a plant specific organelle that can

act both as a lytic and/or storage organelle [24]. Phos-

phoinositides, in particular the PI ! PI(3)P ! PI(3,5)P2

cascade (Figure 1c), are involved in endosomal sorting

events leading to membrane protein degradation or

retrieval, vacuolar morphogenesis and autophagy.

PI(3)P and PI(3,5)P2 sort PM proteins toward degradation

or recycling

After endocytosis, membrane proteins can recycle back to

the PM or be targeted to the vacuole for degradation. LE/

MVBs mature from TGN/EE, which gradually loses PI(4)

P on its membrane and acquires PI(3)P together with the

RabF protein ARA7/RabF2b (Figure 3c) [25,26]. PI(3)P is

synthetized by the phosphatidylinositol 3-kinase (PI3K)

VACUOLAR PROTEIN SORTING34 (VPS34), while

the concomitant PI(4)P hydrolysis might be regulated

by ROOT-HAIR-DEFECTIVE4 (RHD4)/AtSUPRES-

SOR-OF-ACTIN7, a PI(4)P phosphatase that localizes in

the TGN/EE (Figure 3b) [27].

Protein sorting during the maturation of TGN/EE

into LE/MVB is orchestrated by the antagonistic activi-

ties of the ENDOSOMAL-SORTING-COMPLEX-

REQUIRED-FOR-TRANSPORT (ESCRT) and the

retromer complexes. ESCRT complexes mediate the

internalization of ubiquitinated proteins into intraluminal

vesicles of MVB/LE before their fusion with the lytic

vacuole, where proteins are degraded. The retromer

complex is involved in the retrieval of membrane proteins

before their internalization in intraluminal vesicles,

thereby allowing their subsequent recycling. In both

cases, the function of these antagonistic complexes is

intimately linked with PI(3)P (Figure 3c). Indeed, the

plant specific ESCRT component FYVE1/FREE1 loca-

lizes in LE/MVB by binding concomitantly to PI(3)P,

ubiquitinated cargos and ESCRT-I proteins [8,9,28,29�].
The seedling lethal fyve1/free1 mutant shows MVB and

vacuole defects and fails to target ubiquitinated proteins

to the vacuole for degradation, which instead mislocalize

to the tonoplast [9,29�]. In addition, the retromer com-

ponents AtSNXs are also targeted to LE/MVB by PI(3)P

[6,7]. In snx1 and retromer mutants, the PIN auxin efflux

carriers are not recycled back to the PM efficiently and are

instead targeted to the vacuole for degradation [30–32].

The AtSNX1-interacting protein CYTOPLASMIC-

LINKER-ASSOCIATED-PROTEIN (CLASP) links

AtSNX1-containing endosomes with cortical microtubules

to regulate PIN2 trafficking [33]. AtSNX1 also interacts

with phosphatidylinositol 3-phosphate 5-kinases (PI(3)

P5Ks) from the PHOSPHOINOSITIDE-KINASE-

FYVE-FINGER-CONTAING (PIKfyve)/FAB1 family

(Figure 1c, g), which regulates AtSNX1, CLASP and

PIN2 localization [34�].

Phosphoinositides and the regulation of vacuole

morphology

Phosphoinositides control the biogenesis and morphology

of the central vacuole. The SOLUBLE-NSF-ATTACH-

MENT-RECEPTOR (SNARE) protein VTI11 is

involved in the fusion of LE/MVB with the vacuole

[24]. vti11 mutants harbors small unfused vacuoles, a

phenotype that is rescued by inhibition of PI3K activity

[35]. fyve1/free1 and retromer mutants also accumulates

small fragmented vacuoles, supporting a role for PI(3)P in

this process [9,29�,31,32,36�]. It is likely that PI(3)P-

dependent endosomal sorting via the ESCRT and retro-

mer complexes is important for the correct trafficking and

localization of SNARE proteins involved in vacuole

fusion.

PI(4)P also connects SNARE trafficking and vacuole

morphology [37��,38�], although the mechanisms are still

unclear and could be indirect. However, actin is impor-

tant to shape vacuole morphology [35,38�]. Transient PI

(4)P production has recently been described as an impor-

tant regulator of actin synthesis on endosomal membranes

in animal cells [18�]. It is therefore possible that a similar

transient pool of PI(4)P might locally regulates vacuolar

dynamics and/or sorting function at the LE/MVB, possi-

bly by controlling actin dynamics. The notion that phos-

phoinositides might regulate actin dynamics in the late

secretory pathway is supported by the vacuolar morphol-

ogy defects displayed by loss- and gain-of-function

26 Cell Biology 2017

(Figure 2 Legend Continued) machinery. Note that the example shown in panel (e) relates to clathrin-mediated endocytosis, but similar concepts

may be applied for the formation of other clathrin-coated vesicles, for example at the TGN. (f) Schematic representation of the importance of

phosphoinositides in tubule formation through the coordination of actin polymerization, and the membrane tubulation machinery. Note that the

examples shown in (d)–(e) have not been formally demonstrated in plants even tough proteins containing similar domains are found in plant

genomes and the general concepts are likely applicable to plant endomembrane trafficking. LBD, Lipid Binding Domain; SNX, SORTING NEXIN;

BAR, Bin Amphiphysinn Rvs; +ALPS, +amphipathic lipid-packing sensor; PX, PHOX Homology; LE, Late Endosomes; MVB, MultiVesicular Bodies;

PM, plasma membrane; PI, phosphoinositides; N-WASP, NEURAL WISKOTT-ALDRICH SYNDROME PROTEIN; WASH, WASP AND SCAR

HOMOLOGUE; AP2, ADAPTOR-COMPLEX2; D6PK, D6 PROTEIN KINASE. Negative charges carried by anionic phospholipids are represented by

black circles; cationic residues by red circles; aromatic/hydrophobic residues by purple circles; phosphorylation by orange circles. PI(4)P

distribution is shown in red, PI(4,5)P2 in green, PI(3)P in orange, actin polymerization factors in purple, membrane coat in blue and scission

machinery in pink. All lipid localizations shown are for the cytosolic membrane leaflet only.

Current Opinion in Plant Biology 2017, 40:22–33 www.sciencedirect.com
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Figure 3
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mutants in AtSUPPRESSOR-OF-ACTIN genes (AtSAC2
to AtSAC5) [39]. SAC proteins are phosphoinositide phos-

phatases (Figures 1c and 3b). AtSAC2-5 are homologous

to the Golgi-localized AtSAC1 protein, which has a 5-

phosphatase activity toward PI(3,5)P2 (Figure 3b) [40].

AtSAC2-5 localize on the tonoplast and might control

vacuolar morphology by promoting PI(3,5)P2 hydrolysis

and PI(3)P production in this compartment (Figure 3a, b).

However, it remains to be determined whether AtSAC2-5

function actually links actin dynamics with phosphoinosi-

tide homeostasis to regulate vacuole morphogenesis.

PI(3)P orchestrates autophagy

Autophagy is a cellular degradation pathway that is initiated

by the encapsulation of cytoplasmic cargos in a double

membrane organelle called autophagosome and which

culminates in the fusion of this compartment with the lytic

vacuole. PI(3)P synthesis by the PI3K VPS34, which loca-

lizes to autophogosome in plant cells [41], is a key regulator

of autophagosome formation across eukaryotes (Figure 3a

and b). Furthermore, both ESCRT and retromer mutants

are defective in the autophagy process [29�,36�,42–44].
SNAREs are involved in the fusion of autophagosomes

with the vacuole; it is therefore likely that some of the

autophagy-related phenotypes in ESCRT and retromer

mutants arise from mis-sorting of SNARE complexes

[43]. In addition, FYVE1/FREE1 interacts with the PI

(3)P-binding SRC-HOMOLOGY3-CONTAINING-

PROTEINs SH3P2 and SH3P3, which localize in preau-

tophagosomal structures in a VPS34-dependent manner

[29�,36�]. SH3P2 binds AUTOPHAGY-RELATED-

PROTEIN8 (ATG8) and the PI3K complex and is actively

involved in the deformation of this membrane [41]. SH3P2/

SH3P3 contain a BAR domain, which could facilitate

membrane bending during autophagosome formation.

To conclude, PI(3)P and PI(3,5)P2 control protein sorting,

including SNAREs, toward the vacuole or the TGN/EE,

and may connect cortical microtubules with endosomal

recycling and actin cytoskeleton with vacuole morphology.

Phosphoinositides and polarized trafficking
Phosphoinositides, in particular through the PI ! PI(4)

P ! PI(4,5)P2 cascade (Figure 1c), regulate polarized

exo- and endocytosis. In the following section, we will

focus on their role in tip growing cells, which are highly

polarized, but we will also use additional examples in

other cell types when opportune.

PI(4,5)P2 targets endocytosis in pollen tube

In tip growing cells (root hairs and pollen tubes) growth

occurs via a massive polarized exocytosis of cell wall com-

ponents at the growing tip and is counterbalanced by

endocytosis occurring in subapical regions of the tube,

forming a reversed-fountain flow of membranes

(Figure 4a) [45]. Loss-of function mutants of phosphatidy-

linositol 4-phosphate 5-kinases (PIP5Ks) show low pollen

germination rate, slow tube elongation, endocytic defects

and reduced transmission through the male gametophyte

[46,47]. In growing pollen tube, PI(4,5)P2 localizes at the

flank of apex, in a region with both endocytic and exocytic

activities (Figure 4a, b). This localization is maintained by a

combination of local production of PI(4,5)P2 by PIP5Ks,

which localizes at the flank of apex [46–49] and degradation

into DAG by PI-PLC, which localizes in the shank/subapi-

cal region (Figure 4b, c) [50,51].

PIP5K6-OE enhances endocytosis, which results in PM

invagination and the formation of several tip branches

[48]. The expression of a clathrin dominant negative can

rescue the PIP5K6-OE phenotype indicating that PI(4,5)

P2 synthesis regulates clathrin-mediated endocytosis [48].

A role of PI(4,5)P2 in endocytosis in plants is further

supported by the study of PIP5K1 and PIP5K2 in sporo-

phytic tissues. PIP5K1 and PIP5K2 are auxin-induced

genes that regulate clathrin membrane recruitment,

endocytic trafficking and PIN polarity [3,52–54].

The exocyst is an anionic phospholipid effector involved

in polarized secretion

The exocyst complex tethers secretory vesicles to the

PM, a prerequisite for subsequent membrane fusion [55].

The exocyst binds the PM through the SEC3 and EXO70

subunits, which both have lipid binding activities. In

plants, SEC3 has a PH domain that binds PI(4,5)P2 in
vitro and colocalizes with PI(4,5)P2 in vivo [56��]. sec3a
loss-of-functions show reduced pollen tube growth and

fail to be transmitted through the male gametophyte
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(Figure 3 Legend Continued) patterning. (c) Hypothetical model for ESCRT and retromer-mediated sorting during TGN/EE to LE/MVB maturation.

Canonical markers of the TGN/EE (VHA-a1 and RabAs) and LE/MVB (RabFs, e.g. ARA7) are indicated in italics. Note that maturating TGN/EE

displays both markers, suggesting the existence of transient hybrid organelles, where protein sorting might occur. The existence of such

maturating TGN/EE, that contains RabF/PI(3)P as well as VHA-a1 markers was reported in [26]. PI(3)P distribution is shown in orange; PI(4)P in

red; PI(4,5)P2 in green and PI(3,5)P2 in blue. Arrows represent trafficking pathways between compartments. PM, Plasma Membrane; TGN,

trans-Golgi Network; EE, Early Endosomes; LE, Late Endosomes; MVB, MultiVesicular Bodies; CCV, Clathrin Coated Vesicle; SV, Secretory

vesicle. Triangles indicate concentration gradient of PI(4)P between the PM and TGN/EE and PI(3)P between LE/MVB and tonoplast. PI(3)P,

phosphatidylinositol-(3)-phosphate; PI(4)P, phosphatidylinositol-(4)-phosphate, PI(3,5)P2, phosphatidylinositol-(3-5)-bisphosphate; PI(4,5)P2,

phosphatidylinositol-(4-5)-bisphosphate. SAC, SUPPRESSOR OF ACTIN; PI4K, phosphatidylinositol 4-kinase; PIP5K, phosphatidylinositol-(4)-

phosphate 5-kinase; PI-PLC, phosphoinositide-dependent phospholipase C; AP3, ADAPTOR PROTEIN 3; VPS34, VACUOLAR PROTEIN

SORTING34, ESCRT, ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT. All lipid localizations shown are for the cytosolic

membrane leaflet only.
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Subcellular maps of phosphoinositide localization in tip growing cells. (a) Schematic representation of the organization of tip growing cells. (b) and

(d) are an attempt to draw maps of lipid localization in pollen tubes and root hairs, respectively. It is important to be cautious with such maps,

since there is no consensus across different studies for the localization of PIP metabolic enzymes and PIP sensors in these systems. This is likely

because anionic lipids localizations are highly dynamic in tip growing cells and vary with the mode of growth (i.e. oscillatory or steady growth, see

for example Ref. [56��]). As such, snapshot images are unlikely to represent a full account of lipid/protein localizations. The localizations presented

in Figure 4 are personal interpretations, which should be further studied using quantitative time-lapse imaging. (c) Conceptual model for the

acquisition and maintenance of patterned phosphoinositide membrane domains/organelles. Polarized phosphoinositide kinases locally produce a

given PI species. Phospholipases or phosphatases with complementary localization to the writer modules allow the establishment of sharp

phosphoinositide boundaries by removing incoming PIs that escaped the polar domains either by lateral diffusion or vesicular trafficking. PI(3)P

distribution is shown in orange (localization in root hair studied in [78]); PI(4)P in red; PI(4,5)P2 in green, PI(3,5)P2 in blue, PA in pink and DAG in

purple (localization in pollen tube studied in [50] and in root hair in [79]). Chevron-shaped arrows represent trafficking pathways between

compartments; triangle-shaped arrows indicate activation. Exo, exocytosis; endo, endocytosis; PM, Plasma Membrane; TGN, trans-Golgi Network;

EE, Early Endosomes; LE, Late Endosomes; MVB, MultiVesicular Bodies; CCV, Clathrin Coated Vesicle; SV, Secretory vesicle. Name of enzymes/

proteins involved in phosphoinositides metabolism and/or trafficking are in italic next to the compartment in which they reside. PI(3)P,

phosphatidylinositol-(3)-phosphate; PI(4)P, phosphatidylinositol-(4)-phosphate, PI(3,5)P2, phosphatidylinositol-(3-5)-bisphosphate; PI(4,5)P2,

phosphatidylinositol-(4-5)-bisphosphate; RHD4, ROOT HAIR DEFCTIVE4; SAC, SUPPRESSOR OF ACTIN; COW, CAN OF WORMS; ROP, RHO OF
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[56��]. The localization of SEC3 determines the direction

of the growth and the site of pollen germination [56��].
Furthermore, another anionic lipid, phosphatidic acid

(PA), localizes in subapical PM regions of the pollen

tube, which overlap only partially with tip-localized PI

(4,5)P2 [57]. In growing tobacco pollen tubes, two EXO70

isoforms (EXO70A1 and EXO70B1) overlap with PI(4,5)

P2 and PA markers, respectively (Figure 4b) [58��]. It is

possible that the exocyst complex targets specific PM

sites through coincidence binding with several anionic

phospholipids depending of the lipid binding properties

of the EXO70 isoforms. The exocyst is involved in cell

polarity establishment in many cell types, not just pollen

tube. Additional examples of exocyst-based polarity

include PINs and PEN3 polar localization [59–61], the

establishment of an Ortmannian ring in trichromes [62],

the patterning of xylem secondary cell wall [63], or the

definition of the casparian strip domain [64��]. In the later

example, the localization of EXO70A1 in the casparian

strip domain of the root endodermis nicely correlates with

a local accumulation of PI(4,5)P2, which is itself depen-

dent on EXO70A1 activity [64��].

A precise phosphoinositide patterning coordinates

membrane trafficking during root hair morphogenesis

Similar to pollen tubes, PI(4,5)P2 is crucial to coordinate

membrane trafficking during root hair growth. PIP5K3

and PI(4,5)P2 localize at the tip of growing root hairs

(Figure 4d) [65,66]. PIP5K3 is required for the polar

localization of RHO-OF-PLANT2 (ROP2) and ROP6

during root hair initiation, which themselves coordinate

endocytosis, exocytosis and cytoskeleton dynamics [67��].
pip5k3 mutants have short root hairs, whereas PIP5K3
overexpression induces root hair deformation [65,66].

The localization of PI(4,5)P2 at the tip of growing root

hair is maintained by the action of AtSFH1/CAN OF

WORMS (COW1), a SEC14 domain-containing protein

that is localized at the tip region via direct interaction with

PI(4,5)P2 [68,69�]. Yeast SEC14 and AtSFH1/COW1

stimulate PI4K activity [70], suggesting that AtSFH1/

COW1 might promote local PI(4)P synthesis at the root

hair tip, which could be subsequently channeled to

PIP5K3 for local PI(4,5)P2 synthesis (Figure 4d) [69�].
AtSfh1 mutants have aberrant root hair morphology and

show disperse secretory vesicles at their tip and disorga-

nized actin and microtubule networks [68], highlighting

the importance of precise phosphoinositide patterning for

the coordination of membrane trafficking and cell polarity

establishment.

PI(4)P localizes in root hair subapical regions [71], as

well as some intracellular compartments, which are likely

TGN/EE (Figure 4c). PI4Kb1-b2 and RHD4/AtSAC7, a

PI(4)P phosphatase (Figure 3b), localize in RabA4b-posi-

tive TGN/EE at the tip of growing root hairs (Figure 4d)

[11,27]. pi4kb1/pi4kbb2 double and rhd4/sac7 single

mutants have short bulged root hairs, with swollen

TGN/EE, suggesting a crucial role for PI(4)P in secretion

[11,27,72]. In rhd4/sac7 mutants, PI(4)P accumulates in

aberrant intracellular compartments that are likely TGN/

EE [27,73]. It is possible that RHD4/AtSAC7 in TGN/

EE erases incoming PI(4)P from the PM in order to

maintain the PI(4)P gradient between these membranes

[15�]. However, it is still unclear how PI(4)P kinases and

phosphatases cohabitate in the same compartment and/or

whether they are localized in complementary subdomains

of the TGN/EE (Figure 3b).

The overall consensus is that patterned phosphoinosi-

tides are needed to mark specific domains at the PM for

localized endocytosis and exocytosis. In addition PI(4)P

sorting activity at the TGN/EE is also involved in polar-

ized trafficking toward the PM.

Conclusions and future perspectives
While most concepts linking phosphoinositides with

membrane trafficking are conserved throughout eukar-

yotes, there are a number of emerging plant specific

innovations. First, phosphoinositide subcellular localiza-

tions are different in plants and animals and one of the

future challenges will be to decipher the mechanisms

enabling phosphoinositide subcellular localization and

maintenance in plants. A key point will be to further

understand the tight coupling between the writer and

eraser modules that generates phosphoinositide spatio-

temporal patterns despite their constant dispersal by

lateral diffusion and vesicular trafficking. Furthermore,

compartment interactions at membrane contact sites are

emerging as key regulators of lipid homeostasis and their

importance in phosphoinositide synthesis has not yet

been studied in plants. Second, it remains to be fully

explored whether a bona fide lipid code exists for polarized

trafficking in plants. One of the keys behind such code

might be the presence of multiple EXO70 exocyst sub-

units that could define several PM domains, at least in

part through specific interactions with various anionic

lipids or combinations thereof. Finally, a plant specific

pathway heavily relying on polarized membrane traffick-

ing and not treated in this review is the establishment of

the cell plate during cytokinesis. Several mutants defec-

tive in phosphoinositide metabolism harbor aberrant cell

division phenotypes [72,74] and PIPs have distinctive

localizations during cell division [15�,20,22,73]. However,

the exact roles of phosphoinositides in coordinating

30 Cell Biology 2017

(Figure 4 Legend Continued) PLANT; PI4K, phosphatidylinositol 4-kinase; PIP5K, phosphatidylinositol-(4)-phosphate 5-kinase; PI-PLC,

phosphoinositide-dependent phospholipase C; DAG, Diacylglycerol; PA, phosphatidic acid. All lipid localizations shown are for the cytosolic

membrane leaflet only.
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membrane traffic during cytokinesis are still poorly

understood.
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