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A B S T R A C T   

Food quality and safety are at the heart of consumers’ concerns across the world. Dairy products, because of their 
large consumption, are fertile ground for fraudulent acts. This fact justifies the development of effective, 
accessible, and rapid analytical methods for their authentication. A high-resolution spectral treatment method 
previously developed by our team was applied to 1H NMR spectra of cheese triacylglycerols. 178 Peaks were thus 
quantitated and successfully used in the construction of multivariate models for the quantitation of individual 
fatty acids and for the classification of cheese samples according to the producing species, to their origin and 
variety. Besides, several peaks related to the amount and position of anteisopentadecanoic, butyric, α-linolenic, 
myristoleic, rumenic, and vaccenic acids were, among others, specific biomarkers of cheese groups. For the first 
time in 1H NMR, we were able to identify and to quantitate signals related to minor fatty acids within cheese 
triacylglycerols.   

1. Introduction 

Milk and dairy products are among the most consumed and nutri
tionally complete foods with 811 million tonnes of milk produced in 
2017 (Dairy Market Review-April-2018) and an increase to nearly 906 
million tonnes in 2020 (Dairy Market Review-April-2021). The global 
dairy market was valued at 673.8 billion U.S. dollars in 2019 and was 
projected to grow to 1032.7 billion U.S. dollars by 2024 (Statista, 2020). 
The authenticity of these high-demand products is thus of great 
importance to both producers and consumers. On the other hand, dairy 
products with a protected geographical status (e.g., Protected Designa
tion of Origin: PDO) are distinguished from other similar products of the 
same category by the link between their characteristics and the 
geographical environment (natural and human factors) of the regions 
they originate from. In this way, the geographical environment in
fluences the gut microbiota of the producing animal that in turn affects 
the organoleptic characteristics of the dairy product (Liu et al., 2021). 
Moreover, local know-how, which involves a specific processing or 
ripening procedure, can influence the chemical signature of a cheese 
sample through lipolysis (Gobbetti et al., 2002). Similarly, animal 

feeding is also considered a strong factor in the connection between the 
characteristics of PDO products and their origins (Mordenti, Brogna, & 
Formigoni, 2017). For instance, in Asiago PDO Cheese, higher contents 
of conjugated linoleic acids and anteisopentadecanoic acid were found 
in cheeses made from cows fed on pastures (Segato et al., 2017). The 
specific composition of milk fat of small ruminants makes it valuable 
from a nutritional and health point of view (Sampelayo, Chilliard, 
Schmidely, & Boza, 2007). Beneficial activities of milk lipids include 
anticancer, antimicrobial, anti-inflammatory, and immunosuppression 
properties (German & Dillard, 2006). Therefore, a change in the lipid 
profile of milk can modulate its beneficial effects. In this respect, factors 
decreasing the amount of saturated medium-chain (C12, C14, and C16) 
fatty acids in triacylglycerols and increasing those of butyric, vaccenic, 
and rumenic acids improve the health impact of dairy products (German 
& Dillard, 2006). The fatty acid (FA) composition of triacylglycerols 
(TAG) in cheese is also affected by the farming system. According to 
Giaccone et al. (2016), summer cheeses obtained from extensive farming 
systems showed a better FA composition for human nutrition then 
cheeses obtained from the intensive farming system. As a result, the FA 
profile of TAG in dairy products can be a nutritional and organoleptic 
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quality indicator and a source of biomarkers that allow authenticating 
the animal and geographical origins of the product, the animal feeding, 
the farming system, and the processing adopted. Several techniques 
exist for food authentication such as liquid chromatography (LC) 
(Hoffmann, Münch, Schwägele, Neusüß, & Jira, 2017), isotope ratio 
monitoring by Mass Spectrometry (irm-MS) (Nečemer, Potočnik, & 
Ogrinc, 2016), mid-infrared (MIR) spectroscopy (Karoui, Mazerolles, 
Bosset, Debaerdemaeker, & Dufour, 2007), Raman spectroscopy (Li, 
Shan, Zhu, Zhang, & Ling, 2012), and nuclear magnetic resonance 
spectroscopy (NMR) (Hajjar, Haddad, Rizk, Akoka, & Bejjani, 2021; 
Jung et al., 2010; Merchak et al., 2017). Moreover, molecular biology 
techniques can be used such as Randomly Amplified Polymorphic DNA 
(RAPD) (Cunha et al., 2016). Among the possible analytical techniques, 
NMR spectroscopy has proven to be an indispensable tool for food 
authentication due to the rich chemical information that this technique 
affords in non-targeted metabolomics. 1H NMR allowed the discrimi
nation of milk (Fernandez, Astier, Rock, Coulon, & Berdagué, 2003), 
beef (Jung et al., 2010) and olive oil (Merchak et al., 2017) according to 
their geographical origins. Additionally, 1H NMR permitted the identi
fication of vegetable fat in imitation cheese and ice cream samples 
(Monakhova, Godelmann, Andlauer, Kuballa, & Lachenmeier, 2013). 
However, 1H NMR spectrum of lipids is complex with overlapping sig
nals. Application of high-resolution processing, previously developed by 
our team to analyze 1H NMR spectra of lipid mixtures, allowed to 
overcome this limitation and led to a better classification of olive oil 
samples (Hajjar et al., 2020) as well as egg samples (Hajjar et al., 2021). 
The aim of this study was to develop a high-resolution 1H NMR method 
for the authentication and characterization of cheeses since they 
constitute foodstuffs of great nutritional and economic value. In this 
respect, cheese samples from different geographical origins, producing 
species, and varieties were collected and their TAG extracted and 
analyzed by 1H NMR following the high-resolution method. Multivariate 
analyses of spectral variables were conducted to identify origin bio
markers and to construct prediction models for percentages of individ
ual fatty acids within triacylglycerols. 

2. Materials and methods 

2.1. Samples 

Fifty two cheese samples were collected from local grocery stores. 
Cheese samples were selected according to the producing species, to 
their geographical origin and variety. Samples included 32 cow, 10 
sheep, and 10 goat cheeses. Cow cheese samples were from the following 
countries: Bulgaria (n = 6), France (n = 7), Germany (n = 1), Hungary (n 
= 6), Italy (n = 6), and Netherlands (n = 6). Goat cheese samples were 
from France (n = 5) and Spain (n = 5). Sheep cheese samples were from 
Bulgaria (n = 5) and Italy (n = 5). 

2.2. Chemicals 

Extra pure ethanol and petroleum ether (boiling range 308–333 K, 
ACS basic) were purchased from Scharlab; diethylether (GPR rectapur) 
was purchased from VWR chemicals and deuterated chloroform was 
purchased from Eurisotop. Whatman Purasil silica gel (60A, 230e400 
Mesh ASTM) was used for column chromatography. Merck TLC Silica 
Gel 60 F254, aluminium sheets, 20 × 20 cm was used for thin layer 
chromatography. Standard fatty acid methyl esters were purchased from 
Sigma Aldrich and included methyl butyrate, methyl hexanoate, methyl 
caprilate, methyl decanoate, methyl laurate, methyl myristate, methyl 
palmitate, methyl stearate, methyl oleate, and methyl conjugated 
(9Z,11E)-linoleate. 

2.3. Triacylglycerol extraction 

A specific procedure for the extraction of triacylglycerols from 

cheese samples was developed and published in a previous paper 
(Haddad et al., 2021). Unless otherwise specified, working temperature 
was 295 ± 1 K. Cheese samples (30 g) were taken from the middle of the 
cheese blocks. Samples were cut into small pieces and dissolved in ab
solute ethanol (60 mL on average, depending on samples) at tempera
tures between 313 K and 323 K. The mixture was then filtered after 15 
min of protein precipitation and the residue was successively washed 
with petroleum ether (70 mL), ethanol:diethyl ether (1:1 v/v, 30 mL), 
and diethyl ether (60 mL). Complete extraction of lipids was assessed by 
Thin Layer Chromatography (TLC) using normal-phase silica as the 
stationary phase and a mixture of diethyl ether in petroleum (1:3 v/v) as 
eluent. Solvents were evaporated under vacuum at 318 K. The precipi
tate appearing during the concentration of the solution was separated by 
decantation of the liquid phase containing total lipids. The precipitate 
was washed with absolute ethanol (3 × 10 mL) and then with diethyl 
ether (10 mL). Washing fractions and the liquid phase containing 
extracted lipids were combined and evaporation of solvents continued. 
Total lipids (8.5 g) thus obtained were subjected to a solid-phase 
extraction (SPE) over silica gel (7.8 g) to separate triacylglycerols and 
cholesterol. Lipids were dissolved in 40 mL of diethyl ether:petroleum 
ether (1:9 v/v) and pulled through the column. Additional 85 mL were 
necessary to elute triacylglycerols (TAG). 

2.4. NMR experiments 

2.4.1. Acquisition 
1H NMR spectra of cheese TAG were recorded on a Bruker Avance II 

spectrometer operating at 400.13 MHz (SI, Fig. S1). TAG (167 mg) was 
dissolved in 560 µL of CDCl3 and filtered into a 5 mm NMR tube. The 
longest longitudinal relaxation time T1 (3.19 s) was observed for the 
methyl group of the α-linolenic acid (LnA) as measured by the inversion- 
recovery method. For each sample, seven spectra were recorded using 
the following conditions: probe temperature 298 K, time-domain size 64 
K, pulse angle 30◦, pulse width 27.4 μs, spectral width 9 ppm, acquisi
tion time 9.1 s, relaxation delay 1 s, 4 dummy scans, and 32 scans. The 
global experiment time for the seven acquisitions was 43 min. 

2.4.2. Spectral processing 
Bruker TOPSPIN 4.0.5 software was used for spectra processing. 

Recorded Free Induction Decays (FIDs) were zero-filled to 128 K. Before 
Fourier transformation, an exponential apodization function was 
applied, inducing a line broadening of 0.3 Hz. Spectra (SI, Fig. S1) were 
manually phased and a fifth-order polynomial baseline correction was 
automatically applied. Spectra were also subjected to reference line
shape adjustment (RLA) based on the residual CHCl3 signal. The CHCl3 
signal was used as reference to compute the error function εr(t) that will 
be used to adjust the experimental FID according to the following 
equation (Metz, Lam, & Webb, 2000; Morris, Barjat, & Home, 1997): 

FIDadj(t) =
FIDexp(t)

εr(t)

where FIDexp(t) is the experimental FID and FIDadj(t) is the adjusted one 
that now replaces FIDexp(t). CHCl3 peak shape was adjusted so as to 
obtain a perfect Lorentzian signal with a line width at half-height be
tween 0.5 and 0.6 Hz. After this adjustment, the line width at half-height 
of the most intense peak in the methyl region was between 1.4 and 1.5 
Hz. Each region of the spectrum was then calibrated and deconvoluted 
by adding the minimum number of peaks allowing the best fit (Hajjar 
et al., 2020) (SI, Fig. S2). Deconvoluted peaks were obtained for the 
following spectral regions of triacylglycerols: aliphatic, allylic, diallylic, 
vinylic, methyl groups, glycerol, methylene at position 3 of FAs (CH2β), 
and methylene at position 2 of FAs (CH2α). Intensities and areas of 
deconvoluted peaks were calibrated against the CH2α signal of FAs (its 
overall area or the sum of its peak intensities were set at 600). Signals of 
caproleic acid (C10:1, 9) between 4.80 and 4.94 ppm, and those of 
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rumenic acid (RA, isomer C18:2, c9t11 of conjugated linoleic acid) at 
5.55, 5.85, and 6.20 ppm were weak and thus not able to be deconvo
luted. Instead, they were manually integrated and integrals calibrated 
against the CH2α signal of FAs, which integral was set at 100 (SI, 
Fig. S3). 

2.5. Gas chromatographic analysis 

Fatty acid methyl esters were prepared by shaking 100 mg of TAG in 
1.5 mL of heptane with 0.2 mL of 2 N methanolic potassium hydroxide 
(European Commission, 1977). A 1:10 dilution in heptane was per
formed. An Agilent Technologies chromatograph equipped with a flame 
ionization detector (GC-FID) and a polyethylene glycol (PEG) modified 
with nitrophthalic acid/polyethylene glycol 2-nitroterephthalate col
umn (Optima FFAP-Plus 10 ◦C–250 ◦C (260 ◦C): 30 m × 250 µm × 0.25 
µm) was used with helium as carrier gas at flow of 1.2 mL/min. Oven 
was programmed as follows: 50 ◦C for 3 min after 10 ◦C/min until 
reaching 220 ◦C. Injection volume was 1 µL with a split ratio of 15:1 with 
an injector temperature of 250 ◦C. Two injections were performed for 
each sample with a total elution time of 30 min. Standard fatty acid 
methyl esters were used to determine the retention time of methyl 
butyrate, methyl hexanoate, methyl caprylate, methyl decanoate, 
methyl laurate, methyl myristate, methyl palmitate, methyl stearate, 
methyl oleate, and methyl conjugated (9Z,11E)-linoleate. 

2.6. Chemometrics 

TANAGRA data mining software was used for chemometrics analysis 
(Rakotomalala, 2005). Data obtained from 1H NMR and gas chroma
tography (GC) analyses were subjected to statistical treatments. One- 
way analysis of variance (ANOVA) was used to assess the relative size 
of variance among group means compared to the average variance 
within groups. Principal component analysis (PCA) was used as an 
exploratory analysis. Canonical Discriminant Analysis (CDA) and Linear 
Discriminant Analysis (LDA) were used for the construction of classifi
cation models of samples according to their species, geographical origin, 
and variety. In each case, the performance and robustness of the model 
were assessed using LDA-Error rate (LDA-Er) and Leave-One-Out Error 
rate (LOO-Er). 

Partial Least Square Regression (PLSR) was used to construct indi
vidual FA quantitation models based on the variables obtained from 1H 
NMR spectra as predictors and percentages of FA from GC as targets. The 
number of components (h) was determined following cross-validation 
(internal validation by randomly leaving out 10% of the training sam
ples) by considering the parameter Q2 as an indicator of predictability. 
Maximum cumulative Q2 (Q2

cum) and Predicted Residual Error Sum of 
Squares (PRESS) were used as robustness indicators (Hawkins, Basak, & 
Mills, 2003). The coefficient of determination R2 was used to assess how 
well the relative percentage of a given FA can be predicted using the 1H 
NMR variables. Adjusted R2 was used to compare models constructed 
with different numbers of predictors. Prediction models were subjected 
to external validation using test samples that had not been considered in 
the construction of models. Pred-R2 was used as indicator (Hajjar et al., 
2020). 

3. Results and discussion 

3.1. Spectral variables used as potential predictors in classification and 
quantitation models 

As mentioned in Section 2.4.2, deconvolution was applied to the 
following spectral regions: aliphatic, allylic, diallylic, vinylic, methyl 
groups, glycerol, methylene at position 3 of FA (CH2β), and methylene at 
position 2 of FA (CH2α). As a result, 178 peaks were deconvoluted and 
their corresponding intensities and areas were determined (SI, Tables S1 
and S2). The global within-lab reproducibility (SRwg) of the whole 

analytical method, expressed as relative standard deviation, was deter
mined for each spectral variable by analyzing five aliquots of the same 
cheese sample, starting from TAG extraction until data processing using 
topspin. For each spectral variable, SRwg was used to assess its ability to 
be used in multivariate analyses. This was done by considering SRwg 
–representing the precision of the measurement– and by comparing it 
with the variability (Sv) between the cheese samples. Sv for a given peak 
intensity or area is the relative standard deviation of the 52 samples used 
in the study. Spectral variables having SRwg and SRwg/Sv ratio lower than 
10% and 0.33, respectively, were used as predictors in classification and 
quantitation models. Each spectral variable with one of these two pa
rameters higher than the set value was merged with nearby ones in order 
to reach acceptable SRwg and SRwg/Sv for the package. (SI, Tables S1 and 
S2). 

3.2. Classification of cheese samples 

3.2.1. Classification of samples according to the producing species 
The potential of 1H NMR variables in the discrimination of cheese 

samples according to the producing species was investigated. Using 
CDA, a classification model based on two variables was constructed with 
LDA-Er and LOO-Er of 0% (Fig. 1a and SI, Table S3a). 

Besides, TAG variables that vary significantly (p ≤ 0.05) between 
cheese samples from different groups are shown in (Table 1). Such 
variables can be used to characterize cheese samples according to the 
producing species. For instance, variable Bu-s (SI, Fig. S2a and 
Table S2), related to butyric acid, was lower in goat than in sheep and 
cow cheese samples (Table 1 and Fig. 1b). Variable AL10s (or AL10i) (SI, 
Fig. S2c, Tables S1 and S2), which is the area (or intensity) of a 
deconvoluted peak in the allylic region of the spectra, was higher in cow 
than in goat and sheep cheese samples (Table 1 and Fig. 1b). We 
discovered that the deconvoluted peak AL10 (SI, Fig. S2c) corresponds 
to myristoleic acid (C14:1, c9), as shown in Section 3.3 (R2 = 0.832). 
Percentages of this acid in TAG from cow cheese samples were thus 
higher than those of sheep and goat ones, which is in accordance with 
the literature (Ceballos et al., 2009). 

Similarly, we discovered that variable AL18-19s (or AL18-19i), 
which is a combination of deconvoluted peaks AL18 and AL19 in the 
allylic region, corresponds to vaccenic acid (C18:1, t11, VA) (see Section 
3.3). This acid showed significantly lower percentages in cow than in 
goat and sheep cheeses (Table 1). Other variables allowing such 
discrimination between cheeses from different species are reported in 
Table 1. Moreover, we found that sheep cheese samples were richer in 
α-linolenic (C18:3, c9c12c15, LnA) and polyunsaturated FAs (PUFA) 
than those from cow and goat. Also, rumenic acid (RA) –isomer C18:2, 
c9t11 of conjugated linoleic acid, known to have anticarcinogenic, 
antiobese, antidiabetic and antihypertensive properties (Koba & Yana
gita, 2014)– was higher in sheep than in cow and goat cheese samples 
(Table 1). 

According to Stoop et al. (Stoop, Van Arendonk, Heck, Van Valen
berg, & Bovenhuis, 2008), the within-breed genetic variation and the 
differences in feeding regimens have a considerable effect on FA 
composition. For C4:0 to C18:0, genetic factors were dominant. 
Whereas, for unsaturated C18 FAs, including VA and RA, herd factors 
involving the feeding regimen and other management practices were 
larger than genetic ones. However, in the discrimination discussed in 
this section, the genetic factors should be the prominent ones since 
different species were involved and not different breeds. Moreover, herd 
factors were not likely since samples of each species were from different 
geographical origins (i.e., different countries), different producers 
within the same country, and different seasons. 

3.2.2. Classification of samples according to their geographical origin 
Aiming to eliminate interference of the animal origin factor with the 

classification of samples according to their geographical origin, only 
cheese samples from the same producing species were considered at a 
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time. First, cow cheese samples were considered. The collected samples 
came from the following countries: Bulgaria, France, Hungary, Italy, and 
Netherlands. It was possible to discriminate between all groups using 
CDA with 10 predictors, as assessed by LDA-Er (0%) and LOO-Er (6.45%) 
(Fig. 2a and SI, Table S3b). 

Spectral variables showing an obvious tendency to be higher or 
lower in samples from a given geographical origin than in others are 
reported in Table 1. Related variations between groups are also re
ported. Variable CH3-20s (SI, Table S2 and Fig. S2a) was in general 
lower in samples from Netherlands than in other samples (Table 1). 
Variable G6-8s (SI, Fig. S2g) showed a tendency to be higher in Italian 
than in other samples (Table 1). Most likely, this variable is affected by 
the presence or absence of short-chain fatty acids in the TAG molecule. 
Feeding systems are the main factor leading to the observed differences 
in the lipid profile of cheeses from different geographical regions 
(Elgersma, Tamminga, & Ellen, 2006; Gaspardo, Lavrenčič, Levart, Del 
Zotto, & Stefanon, 2010; Segato et al., 2017). Moreover, diet and envi
ronment are also among the main factors affecting the rumen microbiota 
of the herd that, in turn, imprints the FA profile of milk fat (Liu et al., 
2021). On the other hand, breeds of herds in a given country may also 
contribute to the observed discrimination. For some FAs, this factor is 
the most influencing (Stoop et al., 2008). 

For sheep cheeses, variable V13i (SI, Table S1) was sufficient to 
discriminate Bulgarian from Italian samples (Fig. 2b). V13i is the in
tensity of a deconvoluted peak from the vinyl region of the spectra (SI, 
Fig. S2h). It is one of the peaks within the signal of RA at 5.35 ppm. 
However, Sum of intensities V13i, V14i, and V15i (SI, Fig. S2h) had a 
stronger correlation (R2 = 0.9172, n = 52, p < 0.00001) with percentage 
of RA (determined by GC) than V13i alone (R2 = 0.8012, n = 52, p <
0.00001). Plausibly, this indicates that peak V13 corresponds to a spe
cific position of RA on the glycerol moiety of TAG and not to total RA. 
Although the RA percentage was, in general, higher in Bulgarian than in 
Italian cheeses, the best discrimination was not due to this variable but 
to V13i. Variables related to the distribution of individual FAs at the sn- 
1, sn-2, and sn-3 positions of the glycerol backbone of TAG could be 
essential nutritional biomarkers. This is due to the activity of pancreatic 
lipase that is highly specific to positions sn-1 and sn-3. Thus, FAs 
released from the sn-1 and sn-3 positions are often metabolized differ
ently from fatty acids retained in the sn-2 position (Hunter, 2001). 

Similarly, classification of goat cheese samples according to their 
geographic origins was possible with variable V9i (Fig. 2c). V9i is the 
intensity of a deconvoluted peak from the vinylic region of the spectra 

(SI, Table S1 and Fig. S2h). 

3.2.3. Classification of cow cheese samples from the same country 
according to their variety 

Classification of samples according to the cheese variety was also 
investigated. Varieties from the same country were compared, aiming to 
minimize environmental effects. Obvious differences between cheese 
varieties are shown in (Table 1). The French cheese “Comté” was 
distinguishable from the other cow cheeses. The “Comté” samples were 
richer in RA (Fig. 3a) and Table 1. RA in milk TAG is synthesized in two 
ways: (i) as an intermediate of the microbial biohydrogenation of lino
leic acid to stearic acid in the rumen, (ii) and mainly from VA by the 
action of delta-9 desaturase in the mammary gland. It should be kept in 
mind that VA is formed during biohydrogenation of oleic, linoleic, and 
α-linolenic acids by the rumen microbiota (Palmquist, Lock, Shingfield, 
& Bauman, 2005). Thus, the rumen microbiota is the primary factor in 
synthetic routes of both VA and RA. It was highly remarkable that 
percentages of bioactive fatty acids RA, VA, and LnA were the highest in 
“Comté” compared to all other cow cheese samples in this study. A 
similar increase of these three FAs was observed in milk from cows 
grazing cool-season pasture compared to cows grazing pearl millet 
(Bainbridge et al., 2018). It is known that fractional contribution of LnA 
to total FAs is higher in grasses than in forbs (Clapham, Foster, Neel, & 
Fedders, 2005). This can explain the highest percentage of this FA in 
TAG of “Comté” since this PDO cheese results from an extensive farming 
system in a restricted geographical area where cows (“Montbéliarde” 
and “Simmental française” breeds) are mainly fed fresh grass in the 
fields or hay from the same fields in winter. Moreover, “Comté” speci
fications indicate a limitation to one cow per hectare of fodder surface- 
area, a ban on silage, and a limitation of feed concentrate to 30% dry 
matter in the total feed (Colinet, Desquilbet, Hassan, Dilhan, Orozco, & 
Requillart, 2006). Besides, a strong positive correlation (R = 0.88, n =
52, p < 0.00001) was found between spectral variables corresponding to 
VA (variable AL18-19i) and RA (variable RA) when all cow, goat and 
sheep cheese samples were considered. This correlation was in accor
dance with that reported by Jahreis et al. (Jahreis, Fritsche, & Steinhart, 
1997) (R = 0.85). Similarly, a strong positive correlation (R = 0.79, n =
52, p < 0.00001) was found between spectral variables corresponding to 
LnA (variable LnA-i) and RA (variable RA). 

For Bulgarian cheeses, white cheese samples were discriminated 
from “Kashkaval” samples using G2-9s (Fig. 3b), a variable extracted 
from the sn-2 signal of the glycerol moiety in TAG (SI, Fig. S2h and 

Fig. 1. Classification of goat, sheep, and cow cheeses according to the producing species using CDA axes (a) or variables Bu-s and AL10s (b).  
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Table 1 
Variations of cheese TAG variables in response to changes of producing species, geographical origin, cheese variety, and producer.  

Compared cheese 
groupsa 

Variableb Variabilityc 

(%) 
Compared cheese groupsa Variableb Variabilityc 

(%) 

Cow (32) to Goat (10) B2i* (0) ≈ B1i* (0) ≈ B3i* (0) 
≈ Bu-s (0) [C4:0] 

+33.9 Cow: Netherlands (6) to other 
countries (25) 

CH3-20s (0.00090) − 19.1 

A11i (0) +95.2 DAL18-20i (0.00089) − 44.4 
AL10s (0) [C14:1c9] +80.5 Sheep: Bulgaria (5) to Italy (5) V13i* (0) ≈ RA (0.0094) ≈ V9i (0.033) [C18:2 

c9, t11] 
+49.9 

G9i (0) +117 DAL9-11i (0.0097) [C18:3c9,12,15] +20.3 
AL8s (0) − 119.3 G2-10s (0.011) +17.0 
AL17i (0) − 30.4 Caproleic (0.027) − 16.8 
AL18-19s (0) [C18:1t11] − 79.6 G2-9i (0.014) − 9.4 
AL16s (0) − 130.6 V16-19s (0.014) +13.2 
G13-14s (0) +72.6 Goat: France (5) to Spain (5) V9i (0.0011) +55.7 
V19i (0) +49 France cow: “Comté” (3) to 

other cheeses (4) 
AL18-19i (0) [C18:1 t11] +59.1 

AL15s (0) +94.4 DAL12-14i (0) +53.1 
AL11-13i (0) − 19.2 RA (0.0070) ≈ V13i*(0.0073) ≈ V8-11i 

(0.011) ≈ V14i* (0.015) ≈ V1-7i (0.0084) 
[C18:2c9,t11] 

+104.8 

G2-9s (0) − 28.5 LnA-i (0.011) ≈ DAL9-11i (0.013) 
[C18:3c9,12,15] 

+67.4 

G10-12i (0) − 10.0 A12s (0.018) –22.2 
Cow (32) to Sheep 

(10) 
A11i (0) +96.0 V22i (0.020) [ω 5,6,7,8 &9] +13.0 
V19i (0) + 46.7 V15i (0.031) +40.5 
AL10i (0) [C14:1c9] +69.5 CH3-25-26i (0.031) − 5.8 
AL14s (0) +53.4 AL15-17i (0.038) +30.9 
DAL9-11i (0) ≈ LnA-i (0) ≈
V6i (0) [C18:3c9,12,15] 

− 70.8 Italy cow: “Parmesan” (3) to 
other cheeses (3) 

AL12s (0.0060) +21.5 

DAL12-14i (0) − 53.8 DAL9-11i (0.013) [C18:3c9,12,15] +40.3 
AL8s (0) − 91.2 DAL12-14i (0.015) +35,3 
G1i (0) +110.5 V24i (0.015) +20.3 
G9i (0) +63.8 DAL21-23i (0.019) +34.2 
V21s (0) +26.1 DAL18-20i (0.022) +32.0 
V8-11i (0) [C18:2c9,t11] − 65.6 AL4-5s (0.038) − 32.3 
G11i (0) +34.4 V21s (0.046) +6.8 
AL1-3i (0) [PUFA] − 64.6 Bulgaria cow: “kashkaval” (2) 

to Bulgarian white cheese (4) 
G2-10s (0.0038) − 18.5 

AL18-19i (0) [C18:1,t11] − 60.6 G2-9s (0.0078) +18.8 
V6i (0.016) [C18:3c9,12,15] +31.8 

Goat (10) to Sheep 
(10) 

G20s (0) − 40.3 B3s* (0.019) [C4:0] − 9.5 
Bu-s (0) ≈ B2i* (0) ≈ B1i* (0) 
[C4:0] 

− 29.1 Cow: “Kashkaval” (8) to other 
cheeses (14) 

V14s* (0) [C18:2c9,t11] +29.3 

G2-10i (0) − 56.8 Cow: Bulgarian white cheese 
(4) to other cheeses (18) 

AL14s (0) +37.9 
G17i (0) − 36.0 B3s* (0.00051) [C4:0] +10.5 
CH3-27-28i (0)[Anteiso 
C15:0] 

− 41.4 AL9i (0.0016) +13.3 

G26i (0) − 35.5 G2-9s (0.0085) − 15.2 
G23s (0) − 51.6 Cow: “Comté” (2) to other 

cheeses (20) 
RA (0) ≈ V13i* (0) ≈ V8-11i (0) ≈ V1-7i 
(0.00062) ≈ V14s (0.0078) [C18:2c9,t11] 

+116.2 

G2-12i (0) − 51.6 AL18-19i (0) [C18:1 t11] +51.5 
G2-9i (0) +29.7 AL20i (0) +51.0 
G2-5i (0) +11.8 V12s (0) +26.9 
G18-19i (0) +6.1 Ln-Ai (0) +33.8 
V8-11i (0.00023)[C18:2c9, 
t11] 

− 53.1 DAL14i (0.001) +60.6 

G2-7i (0) − 14.6 V15i (0.00014) +35.6 
G21-22s (0) +4.9 AL1-3i (0.00022) [PUFA] +47.2 
G2-10s (0) − 60.2 Cow: “Parmesan” (3) to other 

cheeses (19) 
DAL12i (0.0070) +33.7 

G27-28i (0) +5.9 DAL9-11i (0.040) [C18:3c9,12,15] +27.7 
CH3-25-26i (0) +7.1 Cow: “Emmental” (2) to other 

cheeses (20) 
V12i (0.0072) –22.3 

G2-3i (0) +39.6 V16-19i (0.0077) − 17.4 
G2-8i (0) +10.1 V23i (0.014) − 14.8 
LnA-i (0) ≈ DAL9-11s (0) 
[C18:3c9,12,15] 

− 68.8 AL1-3i (0.030) [PUFA] − 45.3 

B12s (0) +20.8  G2-6s (0.0021) − 6.33 
V18i (0) +35.3  CH3-27-28i (0.018) [Anteiso C15:0] − 12.6 
AL1-3i (0) [PUFA] − 58.6  G17i (0.030) +7.31 

Cow: Bulgaria (6) to 
other countries (25) 

AL17i (0) +13.2 Cow Hungary “Kashkaval”: 
Producer 1 (2) to Producer 2 (4) 

RA (0.030) –23.03 
CH3-17i (0) +16.0 G2-13s (0.034) +7.3 
V18i (0.0015) +34.7 CH3-20s (0.035) +10.7 

Cow: Italy (6) to other 
countries (25) 

G6-8s (0) +19.2 G18-19i (0.050) +1.7 
V21s (0.0012) − 11.4 
G5i (0) –32.5  

a Between brackets is the number of samples in each group. bNumber in brackets represents the p value obtained by means of ANOVA, p = 0 means that it 
is<0.00001. Variables are placed according to their increasing p-values. The symbol ≈ means that the variables correspond to the same FA. If known, the FA cor
responding to the variable(s) figures in square brackets. When present, the symbol * means that the variable is probably related to the position of a given FA or group of 
FAs on the glycerol backbone. It can also mean that the variable corresponding to a given FA is probably affected by the two other FAs present on the glycerol backbone. 
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Table S2). Other variables (G2-10s, B3s, and V6i) reported in Table 1 
were also discriminators for these two cheese varieties. Variables G2-10s 
(SI, Table S2 and Fig. S2h) and B3s (SI, Table S2 and Fig. S2f), related to 
the butyrate group in TAG, were both lower in kashkaval than in white 
Bulgarian cheeses. Most likely, this was due to lipolysis of TAG during 

the ripening step in kashkaval production that is known to increase free 
butyric acid and thus, to reduce TAG-containing butyrate at the sn-3 
position (Gobbetti et al., 2002). Moreover, V6i, a variable in the vinylic 
region (SI, Table S1 and Fig. S2h) correlated to LnA (R = 0.88, n = 52, p 
< 0.00001), was higher in “kashkaval” samples. However, variables 
LnA-i and LnA-s, which represent total LnA within TAG, were not dis
criminators for these samples. Similarly, in the case of Italian cheeses, 
while variable DAL9-11i (SI, Table S1 and Fig. S2e) –which is correlated 
to LnA (R = 0.86, n = 52, p < 0.00001)– allowed us to discriminate 
between the “Parmesan” and the other samples, LnA-i and LnA-s did not 
do so. Variables V6i and DAL9-11i are most probably related to LnA at a 
given position in TAG (sn-1,3 or sn-2) or LnA in TAG molecules con
taining a given type of FAs (e.g., short- or long-chain FAs). 

3.2.4. Classification of cow cheese samples according to their variety and 
regardless of their geographical origin 

In this step, we tried to train a model that allows classifying at a time 
all cow cheese samples according to their variety. Samples from the 
same variety were considered to be in the same group, even if they were 
from different origins. The following samples were considered: 4 sam
ples of Bulgarian white cheese (B); 8 samples of “Kashkaval” (K), 2 from 
Bulgaria and 6 from Hungary; 2 samples of “Comté” (C); 3 samples of 
“Emmental” (E) from France, Germany, and Netherlands; 2 samples of 
“Mimolette” (M) from France and Netherlands; and 3 samples of 
“Parmesan” (P). A model based on 11 predictors was able to classify 
samples with no LDA and LOO errors (SI, Table S3c and Fig. 3d). 
Moreover, a successful external validation was achieved with a “Comté” 
(EV-C) and a “Mimolette” (EV-M) sample from Netherlands (Fig. 3d). 

Besides, several variables reported in Table 1 were individually able 
to discriminate a given variety of cheese from others. We cite herein 
AL14s (SI, Table S2 and Fig. S2c), a discriminator for Bulgarian samples 
group; V14s (SI, Table S2 and Fig. S2h), related to RA and affected by the 
position or the distribution of FAs in TAG, which was generally higher in 

cVariability represents the percentage of variation of the corresponding variable (the first one if several are reported): [((average group 1 − average group 2)/((av. gr. 
1 + av. gr. 2)/2)) * 100]. The sign (+) means that the average value of the variable is higher in group 1 than in group 2. The sign (− ) means the opposite. 

Fig. 2. Classification of cheese samples according to their geographical origin: 
(a) cow cheese samples, (b) sheep cheese samples, and (c) goat cheese samples. 

Fig. 3. Classification of cow cheese samples 
according to their variety: (a) within France 
(“Comté” form other varieties), (b) within 
Bulgaria (Bulgarian white cheese from Kash
kaval), (c) within Italy (“Parmesan” from 
other varieties), and (d) regardless of their 
origin. In Fig. 3d, designations of groups is as 
follow: B for Bulgarian White cheese (n = 4); 
K for Kashkaval from Bulgaria (n = 2) and 
Hungary (n = 6); C for “Comté” (n = 2); E for 
“Emmental” from France (n = 1), Germany 
(n = 1), and Netherlands (n = 1); P for 
“Parmesan” (n = 3); M for “Mimolette” from 
France (n = 1) and Netherlands (n = 1); EV-C 
for a sample of “Comté” used in external 
validation; and EV-M for a sample of 
“Mimolette” used in external validation.   
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the “kashkaval” than in the other samples; RA and LnA-I, obvious 
markers of the “Comté” cheeses (cf. Section 3.2.3); and AL1-3i (SI, 
Table S1 and Fig. S2c), which was lower in the “Emmental” than in 
almost all the other samples. Variable AL1-3i was correlated to LnA-i (R 
= 0.91, n = 52, p < 0.00001). However, LnA-i, which represents total 
LnA, did not show the same trend as AL1-3i. It seems that AL1-3i is 
related to LnA at the sn-1 and/or the sn-3 positions of TAG. Low values of 
this variable in the “Emmental” samples could be due to the release of 
LnA from the before-mentioned positions of TAG during the cheese 
ripening phase. 

Thus, the ripening phase and its duration, the cattle feeding, the 
farming system, the geographical origin, the environmental conditions, 
and the cattle breed are factors affecting the FAs profile of cheese TAG, 
leading to their varietal specificity. 

3.2.5. Classification of hungarian cow cheese samples according to the 
producer 

Samples from two producers of “kashkaval” cheese in Hungary were 
considered: Prod-1 (n = 2) and Prod-2 (n = 4). TAGs in Prod-2 samples 
were higher in RA, and variable G2-6s (SI, Table S2 and Fig. S2h) made it 
possible to discriminate samples from the two producers (Fig. 4). 
Moreover, variable CH3-27-28i (SI, Table S1 and Fig. S2a) showed 
higher values for Prod-2 samples. For the first time in 1H NMR, we 
discovered that this variable is related to anteisopentadecanoic acid (cf. 
Section 3.3). Other variables able to discriminate between Prod-1 and 
Prod-2 samples are reported in Table 1. Thus, samples can be distin
guished according to the producer, even within the same country and 
cheese variety. Such discrimination could be due to differences 
regarding the cattle breed, the pasture, and the environment. These 
factors also affect the rumen microbiota that impacts the FAs profile in 
TAG (cf. Section 3.2.3). 

3.3. Quantitation of individual FAs within cheese TAGs using 1H NMR 

Aiming to improve the characterization of cheese samples by 1H 
NMR, three approaches were used to quantitate individual FAs. First, 
known signals were used to quantitate α-linolenic, butyric, rumenic, and 
caproleic acids. For LnA, the sum of its methyl protons peak intensities, 
denoted LnA-i (SI, Fig. S2a and Table S1), was used to predict its relative 
mass percentage while taking GC values as targets: predicted LnA (%) =
0.0485 × LnA-i − 0.119, R2 = 0.926, n = 51, p < 0.00001. Similarly, 
butyric acid was quantitated using the sum of its methyl protons peak 
intensities, denoted Bu-i (SI, Fig. S2a and Table S1): predicted butyric 
acid (%) = 0.0167 × Bu-i − 0.344, R2 = 0.873, n = 41, p < 0.00001; the 

observed discrepancy between predicted and GC values was most likely 
due to losses of methyl butyrate in the methanolic phase during TAG 
transesterification before GC analysis. RA was quantitated using the 
average of its signal integrals (RA-intg, SI, Fig. S3b and Table S2), 
calibrated against the integral of CH2α signal of FAs (set at 100). Pre
diction of RA relative mass percentage based on GC values as targets 
gave: predicted RA (%) = 1.31 × RA-intg + 0.0957, R2 = 0.961, n = 51, 
p < 0.00001. Caproleic acid was quantitated only by 1H NMR using 
corresponding signal integrals between 4.80 and 4.94 ppm (vinylic 
methylene protons, SI, Fig. S3a and Table S2). Integrals in question were 
calibrated similarly to those of RA. Correlation between amounts of 
caproleic acid determined by 1H NMR and GC was excellent in the case 
of sheep cheese samples (R2 = 0.983, n = 9, p < 0.00001). However, 
these amounts were remarkably less correlated in the cases of goat (R2 =

0.584, n = 10, p = 0.01) and cow (R2 = 0.317, n = 32, p = 0.0008) 
cheese samples. The discrepancy observed for goat cheese samples was 
most probably due to another compound having 1H NMR signals over
lapping with those of caproleic acid used in the quantitation. For cow 
cheese samples, it was most likely due to an isomer of caproleic acid 
with the same retention time in GC analysis. 

In a second FA quantitation approach, the linear correlations be
tween the 1H NMR variables (the deconvoluted peak intensities or areas) 
and the relative mass percentages of FAs determined by GC were 
investigated. This approach allowed us to discover peaks corresponding 
to specific FAs. Thus, vaccenic (VA), anteisopentadecanoic (Anteiso- 
C15:0), and myristoleic acids were quantitated. Variable AL18-19i (SI, 
Fig. S2c and Table S1) was found to be correlated to VA percentage 
determined by GC: predicted VA (%) = 0.396 × AL18-19i − 0.267, R2 =

0.854, n = 51, p < 0.00001. Variable CH3-27-28i (SI, Fig. S2a and 
Table S1) allowed predicting GC-determined mass percentages of 
Anteiso-C15:0: predicted Anteiso-C15:0 (%) = 0.0294 × CH3-27-28i −
0.174, R2 = 0.846, n = 51, p < 0.00001. We mention herein that variable 
CH3-27-28i represented the percentage of all branched FAs (antieso- 
and isoFAs) since the coefficient of determination (R2) reached 0.922 (n 
= 51, p < 0.00001) when all the GC-quantitated FAs of this category 
were considered in the correlation. Similarly to variables AL18-19i and 
CH3-27-28i, variable AL10i (SI, Fig. S2c) and × allowed quantitating 
myristoleic acid: predicted myristoleic acid (%) = 0.117 × AL10i −
0.722, R2 = 0.832, n = 51, p < 0.00001. It should be noted that myr
istoleic acid percentages in TAG from goat and sheep cheeses were 
approximately the same but, on average, 6.71 times lower than those in 
TAG from cow cheeses. Myristoleic acid was the only unsaturated FA 
showing this trend and AL10i was the only 1H NMR variable in accor
dance with this trend. However, AL10i was, on average only 1.84 times 
lower in TAG of goat and sheep cheeses than in cow ones. This most 
likely means that myristoleic acid and another unsaturated FA have 
signals that overlap at AL10. However, the amount of the second FA does 
not follow the same trend as that of myristoleic acid when comparing 
goat and sheep cheeses with cow ones. 

In a third approach, PLSR was used to construct individual FA 
quantitation models based on 1H NMR variables as predictors (only 
statistically significant variables were kept in models) and relative mass 
percentages of FAs determined by GC as targets. Following this 
approach, quantitation models for caproic, caprylic, capric, oleic, pal
mitic, margaric, anteisomargaric, and linoleic acids were constructed 
(Fig. 5 and SI, Table S4). The performance and robustness parameters of 
the models are reported in Fig. 5. Models of caprylic, capric, and ante
isomargaric acids were constructed using variables belonging to other 
FAs. It was due to correlations between FAs within the TAG of the milk 
matrix. 

Aiming to compare the sensitivity of FA quantitation by 1H NMR and 
GC-FID, Limit of Detection (LOD) and Limit of Quantitation (LOQ) were 
estimated for both techniques in the case of α-linolenic acid. This was 
done based on within-Lab reproducibility (SRwg, expressed herein as 
standard deviation; cf. Section 3.1) with LOD = 3.SRwg and LOQ = 10. 
SRwg (Magnusson & Örnemark, 2014). For GC-FID, the LOD and LOQ 

Fig. 4. Classification of cheese samples from the same variety and country 
according to the producer in Hungary. 
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Fig. 5. Correlations between fatty acid percentages obtained by GC (x-axis) and those predicted using variables from high-resolution 1H NMR spectra processing (y- 
axis). ◦ Training samples, • test samples for model validation, p = 0 means that it is less than 0.00001. 
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values were 0.028% and 0.093%, respectively. For 1H NMR, lower but of 
the same order of magnitude sensitivity was observed (LOD = 0.065% 
and LOQ = 0.22%). However, “high-resolution” 1H NMR has the 
advantage of affording a whole set of variables related not only to the 
FAs profile of TAG but also to their distribution on the glycerol skeleton. 

4. Conclusion 

The high-resolution 1H NMR method has proved highly effective in 
discovering authentication biomarkers for food of animal origin. This 
method was successfully applied to classify cheese samples according to 
their producing species, geographical origin, variety, and producer. 
Variables related to the position or distribution of fatty acids in tri
acylglycerols were among the biomarkers used in classifications. The 
obtained results suggested a significant effect of the rumen microbiota 
on the differences observed between samples. On the other hand, 
spectral peaks specific to vaccenic, anteisopentadecanoic, and myr
istoleic acids were discovered. These minor fatty acids were thus 
quantitated in cheese triacylglycerols. Besides, the characterization of 
cheese samples by 1H NMR was further improved via individual quan
titation of several fatty acids using partial least squares regression. The 
present methodology paves the way for authentication analysis of all 
dairy products, including organic, PDO, and traditional specialty 
products. 
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Hoffmann, B., Münch, S., Schwägele, F., Neusüß, C., & Jira, W. (2017). A sensitive HPLC- 
MS/MS screening method for the simultaneous detection of lupine, pea, and soy 
proteins in meat products. Food Control, 71, 200–209. https://doi.org/10.1016/j. 
foodcont.2016.06.021 

Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position 
on triglycerides. Lipids, 36(7), 655–668. https://doi.org/10.1007/s11745-001-0770- 
0 

Jahreis, G., Fritsche, J., & Steinhart, H. (1997). Conjuguated linoleic acid in milk fat: 
High variation depending on production system. Nutrition Research, 17(9), 
1479–1484. https://doi.org/10.1016/S0271-5317(97)00138-3 

Jung, Y., Lee, J., Kwon, J., Lee, K.-S., Ryu, D. H., & Hwang, G.-S. (2010). Discrimination 
of the geographical origin of beef by 1H NMR-based metabolomics. Journal of 
Agricultural and Food Chemistry, 58(19), 10458–10466. https://doi.org/10.1021/ 
jf102194t 

Karoui, R., Mazerolles, G., Bosset, J., Debaerdemaeker, J., & Dufour, E. (2007). 
Utilisation of mid-infrared spectroscopy for determination of the geographic origin 
of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chemistry, 105(2), 847–854. 
https://doi.org/10.1016/j.foodchem.2007.01.051 

Koba, K., & Yanagita, T. (2014). Health benefits of conjugated linoleic acid (CLA). Obesity 
Research & Clinical Practice, 8(6), e525–e532. https://doi.org/10.1016/j. 
orcp.2013.10.001 

Li, S., Shan, Y., Zhu, X., Zhang, X., & Ling, G. (2012). Detection of honey adulteration by 
high fructose corn syrup and maltose syrup using Raman spectroscopy. Journal of 
Food Composition and Analysis, 28(1), 69–74. https://doi.org/10.1016/j. 
jfca.2012.07.006 

Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., … Wang, J. (2021). Ruminal 
microbiota–host interaction and its effect on nutrient metabolism. Animal Nutrition, 7 
(1), 49–55. https://doi.org/10.1016/j.aninu.2020.12.001 
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