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Abstract – Arachidonic acid is the second polyunsaturated fatty acid in brain and the first one belonging
to the v-6 series. Dietary intakes of arachidonic are between 50 and 300mg/day in western diets but they
might be underestimated. Triglycerides from fat would provide similar amounts than phospholipids of
lean meat. Alzheimer’s disease is an age-associated degenerative disease and a critical health concern
worldwide. Amyloid-b peptide oligomers are presently recognized as the main and earliest agents of
Alzheimer’s disease although their neurotoxicity requires the presence of tau protein. We and others
established that the arachidonic-specific cytosolic phospholipase A2 is critical for the amyloid-b peptide
oligomer neurotoxicity. Then, we showed that an arachidonic acid-rich diet increases the mouse
sensitivity to the amyloid-b peptide oligomer deleterious effect without major increase of arachidonic
acid levels in brain. This suggests that dietary arachidonic acid can exert its effects in brain through
peripheral modifications. Involvement of systemic sub-inflammation and gut-brain communications are
discussed based on the recent literature. The various data suggest that dietary arachidonic acid should be
taken into account in the design of preventive strategies against Alzheimer’s disease.

Keywords: arachidonic acid / inflammation / brain / diet / Alzheimer’s disease

Résumé – L’acide arachidonique alimentaire : un acteur à deux faces dans le cerveau et la maladie
d’Alzheimer? L’acide arachidonique est le second acide gras polyinsaturé cérébral et le premier de la
série des v-6. Les apports alimentaires d’acide arachidonique varient entre 50 et 300mg/jour dans les
régimes occidentaux mais pourraient être sous-estimés. Les triglycérides de la partie grasse des viandes
fourniraient des quantités similaires aux phospholipides de la partie maigre. La maladie d’Alzheimer est
une maladie neurodégénérative associée à l’âge et un problème de santé publique majeur dans le monde.
Les oligomères de peptides b amyloïde en sont désormais reconnus comme l’agent principal, bien que la
présence de la protéine tau est nécessaire à leur action. Avec d’autres auteurs, nous avons établi que la
phospholipase A2 cytosolique, spécifique de l’acide arachidonique, assure les effets neurotoxiques des
oligomères de peptide b amyloïde. Nous avons ensuite montré qu’un régime riche en acide
arachidonique augmente la sensibilité des souris aux effets de ces oligomères, sans augmentation
majeure de ses niveaux cérébraux. Ceci suggère que cet acide gras peut agir sur le cerveau par des effets
périphériques comme une sub-inflammation dont le rôle dans la relation intestin-cerveau est discutée
dans la littérature. Les apports alimentaires d’acide arachidonique devrait être intégrés dans la
prévention de la maladie d’Alzheimer.

Mots clés : acide arachidonique / inflammation / cerveau / régime alimentaire / maladie d’Alzheimer

T
o
p
ic
al

Is
su

e

*Correspondence: jean-luc.olivier@univ-lorraine.fr,
jl.olivier@chru-nancy.fr

OCL 2018, 25(4), D406
© K. Pinchaud et al., Published by EDP Sciences, 2018
https://doi.org/10.1051/ocl/2018033

Oilseeds & fats Crops and Lipids
OCL

Available online at:
www.ocl-journal.org

This is anOpen Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:jean-luc.olivier@univ-lorraine.fr
mailto:jl.olivier@chru-nancy.fr
https://www.edpsciences.org
https://doi.org/10.1051/ocl/2018033
https://www.ocl-journal.org
http://creativecommons.org/licenses/by/4.0


Abbreviations

AD Alzheimer’s disease
AICD Activation-induced cell death
APP Amyloid precursor protein
ARA Arachidonic acid
Ab peptide Amyloid-beta peptide
BACE 1 Beta-secretase 1 precursor
CD33 Cluster of differentiation 33
CD36 Cluster of differentiation 36
cPLA2 Cytosolic phospholipaseA2
DHA Docosahexaenoic acid
GFAP Glial fibrillary acidic protein
LDL Low density lipoprotein
LNA Linoleic acid
NFT Neurofibrillary tangles
PSD95 Postsynaptic density protein 95
PUFAs Polyunsaturated fatty acids
SNAP25 Synaptosomal-associated protein 25
SNARE Soluble N-éthylmaleimide-sensitive-factor at-

tachment protein receptor
TLR Toll-like receptor
TREM2 Triggering receptor expressed on myeloid cells 2

1 Introduction

While the influence of docosahexaenoic acid [DHA] in
Alzheimer’s disease [AD] or other neurodegenerative diseases
focused the interest of scientific and medical communities, few
works were devoted to the role of arachidonic acid [ARA] in
these diseases. However, ARA is the second polyunsaturated
fatty acids [PUFA] and the main member of the v-6 series in
brain, representing approximately 20% of the neuronal fatty
acids. In addition, ARA is converted in various eicosanoid
which are important mediators in the various phases of
inflammation, having pro- or anti-inflammatory activities and
is involved in synaptic transmission as retrograde messenger
(Nishizaki et al., 1992) and regulator of SNARE formation
(Rickman and Davletov, 2005). Furthermore, ARA is
considered as an essential fatty acid at least in the maturation
of brain in the pre- and post-natal periods.

It is well admitted that memory alterations are caused by
synaptic dysfunctions in the AD early steps. Neuro-inflamma-
tion contributes to the AD early synaptic dysfunctions and the
neuronal death in the late steps of the disease. Therefore, ARA
is putatively involved in AD through its role in synaptic signal
and in inflammatory process and regulation of its brain levels
could be a target in the fight against AD occurrence and
progression. Despite its putative role in the maintenance of
brain functions, excessive dietary ARA intake could lead to
higher brain incorporation and favour dysregulation of ARA
mobilization and conversion into pro-inflammatory mediators.
However, ARA content in western diets were poorly studied
until now, which makes difficult the evaluation of their impact
on AD risk.

We will first examine, in this review, the present
knowledge about the ARA place in the current western diets.
After a short overview about the AD molecular actors of AD

and the role of neuro-inflammation, we will present recent data
about ARA contribution to ADmechanisms including ours. On
this basis, we will propose some hypothesis on the ARA-
associated mechanisms in AD.

2 Arachidonic acid in the current western
diets

Several studies were performed in the 1990s to evaluate the
ARA daily intake in the western diets and its main sources in
food. According to these studies, ARA daily intakes are in a
wide range from 100 to 200mg/day (Jonnalagadda et al., 1995;
Mann et al., 1995). Studies on Japanese population reported a
narrower but compatible range of values between 100 and
200mg/day (Tokudome et al., 1999; Kuriki et al., 2002). This
wide range of daily intakes (see Tab. 1 for comparison of the
various studies) in western diets could make difficult the
determination of ARA contents in currently consumed foods as
suggested by some works about the ARA underestimation at
least in American diet (Taber et al., 1998). ARA is provided
directly from some food components such as red meat,
chicken, eggs but also fish (http://appliedresearch.cancer.gov/
diet/foodsources/fattyacids/table4.html, data from the Nation-
al Health and Nutrition Examination Survey 2005–2006 USA).
For example, a recent study established that ARA plasma
concentration is associated with the consumption of red meat
in the Singapore Chinese population (Seah et al., 2017).
Although membrane phospholipids are frequently considered
as the main source of ARA, Li et al. (1998) reported that meat
fat and triglycerides provide similar or even higher ARA
amounts especially in white meat, chicken or pork. The case of
chicken or other poultry has to be considered since they are
frequently consumed in many countries and higher ARA
content in poultry improve the taste of the meat (Kiyohara
et al., 2011; Takahashi et al., 2012). Methods of raising and
feeding poultries could therefore increase dietary ARA intakes
in humans.

ARA also results from the conversion of its precursor
linoleic acid [LNA], i.e. the elongation by elongases and
desaturation by D and D6 desaturases. LNA is much more
abundant in human food than ARA. The European Food Safety
Authority [EFSA]) recommended in 2009 the consumption of
2 g/day of a-linolenic acid and 10 g/day of LNA (European
Food Safety Authority, 2009) which corresponded to an
increase of the previous recommendations for v-3 and v-6
daily intakes (2 g/day and 6 g/day respectively in 1992). In
parallel, the World Health Organization recommended that
0.5–2% and 2.5–5% of energy should be provided by v-3 and

Table 1. Evaluation of dietary arachidonic acid intakes. Few studies
evaluated ARA dietary intakes in a limited number of countries and
reported a large range of values.

Sources Range

Jonnalagadda et al., 1995 100mg/day

Mann et al., 1995 < 150mg/day
Tokudome et al., 1999 139–168mg/day
Kuriki et al., 2002 130–150mg/day
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v-6 PUFAs, respectively (i. e. 1.5–6 g/day and 7.5–15 g/day of
v-3 and v-6 PUFAs, respectively) (FAO/WHO, 2008). In
France, the National Individual study on Alimentary Con-
sumptions [INCA] showed that the French people eat on
average 9 g/day of LNA (v-6) and 0.9 g/day of linolenic acid
(v-3) while the US daily average intakes are 18 g and 2 g of
LNA and linolenic acid, respectively, according the
2012USDA study (USDA, 2012). A few studies investigated
the rate of conversion of consumed LNA into ARA in adults
and their data indicated that this conversion poorly contributes
to the ARA amounts found in plasma or in liver (Adam et al.,
2008). On the contrary, the brain ARA requirement of the fetal
baboon are met by dietary maternal LNA (Su et al., 1999),
which suggest that the brain development period must be
considered separately from what happen in adult organism.
Additional worldwide studies are needed to provide more
precise evaluation of the daily ARA intake, the LNA
contribution to the ARA amounts found in peripheral organs
as well in brain and the main food sources of ARA.

3 Main molecular actors of Alzheimer’s
disease and contribution of neuro-
inflammation

AD was originally defined in 1906 by Aloïs Alzheimer by
the presence of two histological pathognomonic signs in brain
of affected patients:

– neurofibrillary tangles (NFTs);
– amyloid plaques (Berrios, 1990).

Neurofibrillary tangles are formed by aggregation of
hyperphosphorylated tau protein filaments while amyloid
plaques result from aggregation of amyloid-b [Ab] peptide
(Fig. 1). Tau protein physiologically associates to microtubules
in mature neurons and play an important role in neuronal
signalling and axonal transport (Nisbet et al., 2015; Chong
et al., 2018). Hyperphosphorylation of tau in AD probably
result from a disequilibrium between kinase (CDK5, GSK3b,
ERK2 and/or other still unidentified kinases) and phosphatase
activities (Gong et al., 2000) and facilitate the formation of tau
helical filaments which finally aggregate into NFTs. In
addition, hyperphosphorylation of tau decrease its affinity
for microtubules which drastically alters the axonal trans-
portations (Iqbal et al., 1994). The importance of tau
dysregulation is highlighted by the correlation between the
clinical symptoms and the extension of NFTs through the
various brain regions (the entorhinal cortex in the earliest
steps, then in the limbic system and the hippocampus the
neocortex in the latest stages of AD) (Silverman et al., 1997).

The amyloid plaques are formed by aggregates of amyloid-
b [Ab] peptide. The Ab peptide is produced by the
amyloidogenic cleavage of the transmembrane amyloid
precursor protein [APP] which function is still unknown. In
this amyloidogenic way, the N-terminal portion of APP is
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Fig. 1. Roles of tau and Ab oligomers in AD. The tau-dependent pathway is associated to hyperphorylation and aggregation of tau-proteins
inducing alterations of neuronal transportations and finally, neuronal death. The Ab peptide-dependent pathway is associated to Ab peptide
production and toxic oligomer formation which alter synaptic functions. In a final step, Ab peptide oligomers aggregate into amyloid plaques
from oligomers which contribute to glial reaction and neuronal death.
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cleaved by the major b-secretase BACE1 while the C-terminal
portion of APP is cleaved by the g-secretase, both the cleavage
releasing the Ab peptide and two other N-terminal (sAPPb)
and C-terminal (AICD) fragments (Vassar et al., 1999). There
are two major forms of Ab peptide: Ab1-40, which is the most
abundant form (90%) and Ab1-42 (10%), which is the most
toxic form. Since the clinical symptoms are not correlated with
the number and size of the amyloid plaques (Lue et al., 1999),
many authors concluded in the early 2000s that amyloid
plaques is not the engine of the pathological process but a late
symptoms. They postulated that the Ab oligomers, formed by
the Ab peptides before their fibrillization and deposition into
plaques, are the initial agent of AD. This hypothesis is
presently largely recognized since numerous studies demon-
strated that these Ab oligomers induce early synaptotoxicity
and damages to neuronal networks, leading to memory
impairment (Gong et al., 2003; Lacor et al., 2007; Shankar
et al., 2008). Despite numerous works, the relationship
between tau and Ab peptide oligomers is still poorly known.
Several studies established that the pathological effects
induced by the Ab peptide oligomers required the presence
of intact tau (Vossel et al., 2010; Mairet-Coello et al., 2013).
Although it is still a subject of debate, Ab peptide oligomers
appear as the earliest and more specific AD agents since tau
alterations are observed in many other neurodegenerative
diseases (Lebouvier et al., 2017).

One of the main question emerging from the tremendous
numbers works on AD and Ab peptide oligomers is the root
cause of intracerebral accumulation of these oligomers in AD
since there is no clear evidence of Ab peptide overproduction
in sporadic AD cases (> 99% of the AD cases) on the contrary
to the genetic cases < 1% of the cases). Dysregulations of
neuro-inflammatory processes could at least contribute to this
accumulation. The importance of neuroinflammation in AD is
supported by the findings of associations between AD and
genes coding for immune receptors, such as TREM2
(Guerreiro et al., 2013) and CD33 (Griciuc et al., 2013).
Microglial cells, which are major actors in neuroinflammation
with astrocytes, recognize Ab peptide oligomers through the
binding to the cell-surface toll like receptors (Walter et al.,
2007; Liu et al., 2012). Stewart et al. described that TLR-4 and
�6 form heterodimers able to bind Ab peptide as well as
oxidized LDL and associate with CD36 to generate cytokine
production and inflammation (Stewart et al., 2010). Why
microglial or astroglial cells are unable to eliminate Ab peptide
and impede accumulation of Ab oligomers and plaque
formations is still unknown. Whether neuroinflammation is
just reactive to the presence of undesirable Ab peptide
oligomers or whether an active contributor to AD pathological
processes is also an opened question. But many recent data
highlighted neuroinflammation as an important actor and a
therapeutic target against AD (Ardura-Fabregat et al., 2017).

4 Arachidonic acid in brain functions and
Alzheimer’s disease: an essential lipid or a
pathological agent?

ARA is usually considered as an essential fatty acid
especially for brain development in association with DHA. To
date, few studies provided some evidenced to support this

hypothesis. Since ARA and its precursor LNA are very
abundant in human food and maternal milk, no drastic
deficiency has been described on the contrary to DHA, which
is 10–20-fold less abundant. Some studies in humans or in
primates indicated that blood ARA levels are not influenced by
diet on the contrary to DHA in humans (Ghebremeskel et al.,
2000; Diau et al., 2005; Lauritzen et al., 2015) and suggested
that DHA/ARA ratio is strictly maintained (Ghebremeskel
et al., 2000). However, a slower growth has been observed in
case of low ARA levels (Ghebremeskel et al., 2000). Several
studies performed on rodents indicated that maternal ARA
supplementation could compensate the alterations of cognitive
abilities in pups induced by maternal metabolic diseases such
as streptozotocin-induced diabetes (Zhao et al., 2011) and diet/
APO-E*3 leiden genotype-induced obesity (Arnoldussen et al.,
2016). A decrease of obesity was observed in the APO-E*3
leiden adult mice with a combination of ARA and DHA
supplementation but not with DHA alone (Wielinga et al.,
2012). Studies on D6 desaturase knockout mice showed that
supplementation with both DHA and ARA are necessary to
compensate the PUFAs deficiencies in brain and the effects on
motor activity and coordination during development (Hata-
naka et al., 2016; Harauma et al., 2017). But, long-term
administration of ARA in adult mice maintained under v-3
deficient diet increases the severity of motor coordination
alterations indicating that preservation of adequate DHA
intake are necessary in any case (Harauma et al., 2015). It is
important to emphasize that sex should be considered for these
studies about dietary lipid intake and brain functions since
brain lipid composition and diet influence differ in male and
female mice (Rodriguez-Navas et al., 2016).

Higher dietary ARA intakes or ARA diet supplementation
counteract the reduction of cognition and synaptic activity
which are observed in healthy aged rodents (McGahon et al.,
1997;McGahon et al., 1998; Kotani et al., 2003; Okaichi et al.,
2005). An ARA positive effect has also been reported on
neurogenesis in rodent hippocampus (Tokuda et al., 2014) but
it is difficult to transpose these data in humans whose
neurogenesis is weak especially during aging. On the contrary,
we observed a negative influence of dietary ARA in a murine
AD model. We previously showed that Ab oligomers activate,
in neuronal cells, cytosolic phospholipaseA2 (cPLA2) which
specifically releases ARA from membrane phospholipids
(Kriem et al., 2005). We then showed that cognitive abilities
and expression of the synaptic proteins PSD95 and SNAP25
are preserved in cPLA2

�/� mice after an intracerebroven-
tricular injection (ICV) of Ab oligomers while they are
drastically altered in wild-type mice after this treatment
(Desbène et al., 2012). By breeding cPLA2

�/� mice and
transgenic AD model mice overproducing Ab peptide,
Sanchez-Mejia et al. (2008) also showed that the reduction
of cPLA2 reduce the neurotoxicity of Ab peptides. Since
cPLA2 specifically hydrolyze ARA containing phospholipids,
we assumed that higher dietary ARA intakes could lead to
higher ARA brain incorporation and favor its release by Ab
peptide oligomer-activated cPLA2. Therefore, we studied the
effects of a single ICV of Ab peptide oligomers in mice fed
with a 1% ARA containing diet for 12weeks (Thomas et al.,
2017). We also used a control diet in which oleic acid replaced
ARA (see Fig. 2 for the experimental layout of this study).
Both ARA-rich and control diets contained adequate amounts
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of DHA and linolenic acid for murine needs. We observed a
drastic reduction of learning abilities, reduction of AMPA
receptor expression levels and increase of the astrocytic
marker GFAP expression after Ab peptide oligomer ICV in
mice fed with the ARA-rich diet compared to the control
group. These negative effects of dietary ARA are consistent
with those of Amtul et al. (2012) who reported that a 2% ARA
containing diets increased of Ab1-42 production and deposition
in transgenic AD-model CRND8 mice after 21weeks. By
contrast, Hosono et al. (2015a, 2015b) described an
improvement of cognitive alterations and a reduction of
amyloid plaques by supplementation with ARA in 17-month-
old Tg2576 mice. The authors did not observe the same
positive results with DHA supplementation. But in this
transgenic AD-model, the Ab peptide overproduction due to
mutant human APP overexpression leads to massive amyloid
deposition and drastic alterations of cognitive abilities before
the age of 12months. In the early step of sporadic AD, there is
no evidence of Ab peptide overproduction and memory
alterations are not caused by amyloid plaque formation but to
the synaptotoxicity of Ab oligomers. Our single Ab oligomer
ICV model is supposed to reproduce this early synaptoxicity
(Youssef et al., 2008). The two groups (Hosono et al., 2015a,
2015b; Amtul et al., 2012) who studied the effects of dietary
ARA did not show any result about the modification of brain
lipids and/or ARA brain incorporation. In our study, we
measure reproducible but small increase of ARA levels in
ARA diet-fed mice. This minor increase compared to the large
modifications that we observed in blood and liver, do not

support the existence of a drastic release of free ARA in brain
and its direct influence on brain inflammation or synaptic
functions. Dietary ARA could increase the brain sensitivity to
Ab oligomer toxicity through the transmission of inflammato-
ry signals from the peripheral compartment to brain (see Tab. 2
for the comparison of the studies on the role of dietary ARA).

5 Dietary arachidonic acid: an actor of
chronic sub-inflammation from gut to brain?

The role of acute or chronic systemic inflammation in the
AD progression emerged quite recently in literature and was
initially focused on the circulation of pro-inflammatory
cytokines (Holmes et al., 2009) The usually admitted dogma
that increased ARA levels increase eicosanoid production was
supported by some works (Whelan et al., 1993; Whelan et al.,
1997) but this eicosanoid production is not automatically
associated to cytokine secretion (Kelley et al., 1997). Dietary
ARA has been mainly involved in two chronic pathologies in
which inflammation plays a critical role: bowel disease and
obesity. Conversion of arachidonic acid into pro-inflammatory
leukotriene was early recognized as a key event in Bowel
disease (Nielsen et al., 1987). But more recent works indicated
that dietary ARA is rather protective against colitis progression
(Ramakers et al., 2008; Knoch et al., 2010). ARAmight favour
obesity by acting on the differentiation of brite adipocytes
which are energy-dissipating cells (Pisani et al., 2014). In
addition, ARA impairs hypothalamic leptin signal, thus
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A /saline 
 ICV 

injection Sacrifice 

Lipids 

Samples 
Blood,Liver, Brain

Synaptic 
proteins 

Analysis Y-maze 
Morris Water Maze 

Fig. 2. Experimental layout of Thomas et al. (2017) study. In this study, two groups groups of mice were fed for 12weeks either with an oleic
acid rich diet (control OLE diet) or an ARA-rich diet (ARA diet). The two diets contained similar amounts of saturated andv-3 fatty acids. In the
OLE diet, oleic acid replace the excess of v-6 fatty acids (mainly ARA). At week 10, the two groups of mice were submitted to
intracerebroventricular injections of Ab(1-42) peptide oligomers or saline solution (control). Congitive abilities were measured by using the Y-
maze (short term memory) and the Moorris Water maze (long term memory) tests. Mice were sacrificed at the end of week 12 and blood, liver
and brain samples were collected for protein (synaptic proteins in brain) and lipid analyses.
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promoting obesity (Cheng et al., 2015). However, there is still
a debate about the ARA influence on obesity-associated
inflammation (Suitor et al., 2017). The role of intestinal
microbiota should be considered to reconcile the various data
on dietary ARA effects on systemic chronic sub-inflammation
in obesity, Bowel disease or chronic pathologies pro-
inflammatory. For example, Zhuang et al. (2017) recently
showed that dietary ARA favour obesity and by acting on the
hypothalamus-liver-adipocytes axis but the effect is modulated
by sex and intestinal microbiota, female mice being less
pejoratively affected. This result should be related to the
current work on the relationship between the gut microbiota
and Alzheimer’s disease (for review see Jiang et al., 2017).
Therefore, the role of gut microbiota, gut-brain communica-
tions, systemic inflammation and its transmission to brain
through the blood-brain barrier should be further investigated
to design preventive strategies against AD (Fig. 3).

5 Conclusion

AD prevention is a critical challenge to stop the increasing
AD prevalence worldwide. Nutrition is one of the main tools in
preventive strategies, but risk factor must be more precisely
characterized. On this point of view, ARA contribution to
western diet and AD risk should be more extensively studied.
Several preclinical works including ours suggest that ARA
could favour AD occurrence and progression although other
studies indicated that ARA could play a positive role in
physiological aging. Additional studies are required on the
various mechanisms induced by high dietary intakes including
modulation of inflammation, modification of the gut micro-
biota, influence on the gut-blood and blood-brain barriers. It is
noticeable that a correlation between ARA and cholesterol
consumption and higher risk of occurrence of Parkinson’s
disease has been reported in the japan population (Miyake
et al., 2010) which suggest that dietary ARA could be a target
in preventive strategies against other neurodegenerative
diseases.
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Table 2. Experimental features and main data of the previous studies on the role of arachidonic acid in AD. We previously showed the mice in
which the expression of the main ARA releasing enzyme cPLA2 has been suppressed, are resistant to the neurotoxicity of the Ab peptide
oligomers. By contrast, an ARA-rich diet increase the sensitivity of the mice to the neurotoxicity of the Ab peptide oligomers. Two other teams
studied the role of dietary ARA and reported conflicting results.

Sources Main experimental features Main experimental data

Desbène et al., 2012 cPLA2
�/� mice

ICV injection of Ab peptides
! cognitive abilities in cPLA2

�/� mice
! PSD95 and SNP25 in cPLA2

�/� mice
Thomas et al., 2017 Balb/c mice

1% ARA diet for 12weeks
ICV injection of Ab peptides

Learning abilities
AMPA Receptors
GFAP

Amtul et al., 2012 CRND8 mice
2% ARA diet for 21weeks

Ab1–42 production and deposition

Hosono et al., 2015a, 2015b Tg2576 mice
ARA Supplementation of the diet 4%

Cognitive alteration
Amyloid plaques

Gut 

Arachidonic 
acid 

Liver 
Adipocytes 

Brain 

microbiota 

Blood-brain 
-barrier 

Inflammatory 
signal ? 

Inflammatory 
signal ? 

Inflammatory 
signal ? 

Fig. 3. Putative roles of gut-brain communications, gut microbiota
and systemic inflammation in the dietary arachidonic acid effects on
the sensitivity to the Ab peptide oligomer neurotoxicity. ARA has an
impact directly or indirectly on the brain. An ARA-rich diet can
modify the composition of intestinal microbiota to induce inflam-
matory mediators and thus, have effects on the Ab peptide oligomer
neurotoxicity. Indeed, arachidonic acid can affect the brain by going
liver, adipocytes and inflammatory mediators.
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