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ARTICLE INFO ABSTRACT

Dry eye disease (DED) is a multifactorial chronic inflammatory disease of the ocular surface characterized by
tear film instability, hyperosmolarity, cell damage and inflammation. Hyperosmolarity is strongly established as
the core mechanism of the DED. Benzalkonium chloride (BAK) - a quaternary ammonium salt commonly used in
eye drops for its microbicidal properties - is well known to favor the onset of DED. Currently, little data are
available regarding lipid metabolism alteration in ocular surface epithelial cells in the course of DED. Our aim
was to explore the effects of benzalkonium chloride or hyperosmolarity exposure on the human corneal epi-
thelial (HCE) cell lipidome, two different conditions used as in vitro models of DED. For this purpose, we per-
formed a lipidomic analysis using UPLC-HRMS-ESI+/ —. Our results demonstrated that BAK or hyperosmolarity
induced important modifications in HCE lipidome including major changes in sphingolipids, glycerolipids and
glycerophospholipids. For both exposures, an increase in ceramide was especially exhibited. Hyperosmolarity
specifically induced triglyceride accumulation resulting in lipid droplet formation. Conversely, BAK induced an
increase in lysophospholipids and a decrease in phospholipids. This lipidomic study highlights the lipid changes
involved in inflammatory responses following BAK or hyperosmolarity exposures. Thereby, lipid research ap-
pears of great interest, as it could lead to the discovery of new biomarkers and therapeutic targets for the
diagnosis and treatment of dry eye disease.
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1. Introduction release of pro-inflammatory cytokines such as IFNy, TNFa, IL-1f3 or IL-6
[3-7].
Hyperosmolarity (HO), known to be the core mechanism of DED,

contributes to promoting and/or nurturing the pathology [2,5]. DED

Dry eye disease (DED) is a multifactorial chronic inflammatory
disease of the ocular surface, affecting 20% of the population [1]. Its

incidence is in constant growth, affecting millions of people worldwide.
DED results in visual disorders and neurosensory abnormalities - dis-
comfort sensations, burning, itching and pain - and alters occupational
performances and quality of life. DED has been defined as “a multi-
factorial disease of the ocular surface characterized by a loss of homeostasis
of the tear film, and accompanied by ocular symptoms, in which tear film
instability and hyperosmolarity, ocular surface inflammation and damage,
and neurosensory abnormalities play etiological roles” [2]. DED is fur-
thermore self-maintained by a vicious circle, enclosing alteration of tear
film, hyperosmolarity, inflammation of the ocular surface leading to
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etiology includes autoimmune origin such as in Sjogren syndrome and
also exogenous causes such as exposure to environmental toxics or ia-
trogenic agents [8]. DED onset may also be related to the toxic effect of
preservatives required by the pharmacopeia guidelines as excipients in
multidose eyedrops, the most common of them being benzalkonium
chloride (BAK) [8,9]. BAK is a quaternary ammonium salt with de-
tergent and microbicidal properties and quaternary ammonium com-
pounds are widely found in disinfecting sprays both at home and at
work [10]. Initially described in glaucomatous patients who are con-
strained to a chronic eyedrop administration [9,11], BAK toxicity
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impacts the different structures of the ocular surface, the conjunctiva,
the cornea but also deeper structures such as the trabecular meshwork,
the lens or even the retina [12,13]. In addition, because of its pro-in-
flammatory, pro-apoptotic and pro-oxidative effects, BAK may be re-
sponsible for DED or worsen it [14-16].

The ocular surface epithelial cells represent a physiological barrier
playing a key role in the protection of the eye. Indeed, corneal and
conjunctival cells are the first impacted during the alteration of the tear
film contributing to the pathophysiology of DED. Many molecular
mediators involved in DED pathophysiology have been widely de-
scribed in in vitro models [2,6,17]. Indeed, corneal and conjunctival
cells exposed to BAK or HO undergo deleterious effects, especially
apoptosis and oxidative stress [18-22]. In addition, an increase in cy-
tokines such as IL-13, TNFa, IL-6, chemokines such as CCL2 or matrix
metalloproteases (MMPs) such as MMP-9, which are all pro-in-
flammatory molecular features of the DED pathology, was reported in
these models [21,23,24].

Both inflammatory processes and cell death phenomena may in-
volve second messengers derived from lipids. Indeed, lipids are not only
the key components of biological cell membranes as well as sources of
energy; they are also key mediators of intercellular and intracellular
processes [25-27]. During the last two decades, some of them have
been described as “bioactive lipids” tightly associated with several
chronic diseases including diabetes, inflammatory bowel disease, mul-
tiple sclerosis, atherosclerosis [28,29]. Several studies have been
dedicated to the role of lipids in ocular pathologies. An increase in
sphingolipid abundance was thus reported in the cornea of diabetic
patients [30]. In addition, Robciuc et al. reported the role of lipids in
ocular pathologies highlighting the importance of sphingolipid home-
ostasis [31]. During DED, lipid composition of the tear film, which is
under control of the meibomius gland secretion, is altered as it was
previously shown by several studies focusing on its lipid characteriza-
tion [32-35]. In contrast, to our knowledge, no study aimed at de-
scribing the modulation of epithelial cell lipids, involved in cell death
process and promoting inflammatory cell recruitment, and its patho-
physiological consequences in DED.

The purpose of this study was to characterize the changes of the
lipid composition in a human epithelial corneal cell line following BAK
or HO exposure, two well-known distinct stressors acting on cell
membranes [36,37]. The aim was also to understand their differential
effects on cell-membrane lipids and in fine, to identify lipid species as
possible key markers of DED. Based on cytotoxicity assay and on gene
expression of proinflammatory cytokines, we first determined the os-
molarity levels and BAK concentrations to be used for cell exposures.
We then performed a comprehensive lipidomic analysis to characterize
qualitatively and quantitatively the changes occurring in the cellular
lipid profile resulting either from HO or BAK exposures. Finally, to
support lipidomic analysis results, we assessed the gene expression of
enzymes involved in the modulated lipid biosynthesis.

2. Material and methods
2.1. Cell line and culture conditions

Human corneal epithelial cell line (HCE) was obtained from the
RIKEN biobank (Tsukuba, Japan) [38]. HCE cells were grown in culture
flasks using DMEM/F12 (1/1), 10% fetal bovine serum (FBS), 2 mM
glutamine, 100 U/mL penicillin and 100 pg/mL streptomycin all from
Gibco (Paisley, UK). At confluence, every 3 days, cells were harvested
with trypsin-EDTA 0.05% in Dulbecco's phosphate-buffered saline
(DPBS). Cells were used in this study from passages 3 to 12.

2.2. Exposure solutions

A stock solution of 0.1% (w/v) BAK (Sigma, Saint Quentin Fallavier,
France) corresponding to 2.65 mM was used to prepare the 10~ *% BAK
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exposure solution, one hundred times lesser than the average con-
centration used in standard eye drop formulations. The 500 mOsM
solutions were obtained after dilution of a 1000 mOsM stock solution
prepared by overloading the culture medium with sodium chloride
(Sigma-Aldrich, Saint Quentin Fallavier, France). Medium osmolarity
was controlled using an osmometer Roebling 13DR (Roebling, Berlin,
Germany).

2.3. Cell viability assay

Neutral Red (NR) uptake assay is based on the lysosome staining of
viable cells after uptake of the dye through an active transport. To as-
sess viability of HCE cells after exposure to HO or BAK, a solution of NR
at 50 pg/mL was added to the cells grown at subconfluence in a 96-well
cell culture plate (20.000 cells/well), in accordance with previously
published data [39]. The solution of NR was let to incubate for 3 h at
37 °C. Cells were washed with DPBS, then lysed using a mixture con-
taining water, ethanol, acetic acid (49.5/49.5/1, v/v/v) and finally
homogenized at room temperature for 15 min on a stirring plate.
Fluorescence intensity was measured using a spectrofluorometer In-
finite® 1000 (TECAN, Neuville-Sur-Oise, France) at 540 nm excitation
and 600 nm emission wavelengths.

2.4. Reactive oxygen species production

ROS production was determined using 2’,7’-dichlorohydro-
fluorescein diacetate (H,DCFDA) assay. The H,DCFDA 0.1 M stock
solution in DMSO (Thermo Fisher Scientific, Saint-Quentin-Fallavier,
France) was used to prepare a 20 uM solution in DPBS. Cells were in-
cubated for 24 h with BAK or under HO condition on a 96-well cell
culture plate, then washed with DPBS and a volume of 200 pL of the
H,DCFDA solution was distributed in each well. Following a 30-minute
incubation at 37 °C in the dark under a 5% CO, atmosphere, cells were
washed with DPBS and fluorescence intensity was measured at 485 nm
excitation and 535 nm emission wavelengths using a spectro-
fluorometer Infinite 1000® (TECAN, Neuville-Sur-Oise, France).

2.5. Lipid droplet staining

Cells were seeded on glass slide in 12-well cell culture plate at
50,000 cells/well. After a 24-hour exposure to BAK or HO, cells were
washed with DPBS and fixed with 4% paraformaldehyde solution in
water.

Oil Red O (OR) staining was performed using a 0.5% OR stock so-
lution (Sigma-Aldrich, Saint-Quentin Fallavier, France) diluted to 3/2
(v/v) in distillated water. This solution was distributed in each well.
Following a 15-minute incubation, the cells were washed three times in
DPBS.

Nile Red (NiR) staining was performed using a stock solution
(Thermo Fisher Scientific, Saint-Quentin-Fallavier, France) diluted to
1/1000 (v/v) in a Mowiol® mounting medium. Nuclei were counter-
stained with DAPI. Glass slides were subsequently mounted under a
cover glass in a Mowiol® mounting medium and were observed by
epifluorescence microscopy. Quantification of area and size of lipid
droplet was performed using imageJ® software (National Institute of
Health).

2.6. Lipidomic analysis

2.6.1. Chemicals and reagents

Chloroform (Carlo Erba Reactifs SDS, Val-de-Reuil, France), acet-
onitrile, methanol, isopropanol of LC-MS grade (J.T. Baker,
Phillipsburg, NJ, USA) and 3,5-di-tert-4-butylhydroxytoluene (Sigma
Aldrich, Saint-Quentin Fallavier, France) were used to prepare cell lipid
extracts and mobile phase for reverse phase liquid chromatography. LC-
MS grade water (J.T. Baker, Phillipsburg, NJ, USA) was used in sample
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preparation and analysis. All standard lipids were purchased from
Avanti Polar Lipids, Inc. (Alabaster, AL, USA) and are listed in the Table
S1 of Supplementary information.

2.6.2. Sample preparation for lipidomic analysis

Lipidomic analysis was performed as previously described [40,41].
Briefly, cells were harvested using trypsin-EDTA 0.05%, washed with
DPBS, centrifuged at 2000 rpm for 10 min. Dry cell pellets were ad-
justed to 3 million cells and stored at —80 °C until analytical process.
After thawing, the cell pellets were resuspended in ultra-pure water
(1 mL) containing a mixture of lipid internal standards (Supplementary
Table S2) at a final concentration of 1 uM and were sonicated for 5 min.
Lipids were extracted using a chloroform/methanol/water (5:5:2, v/v/
v) mixture containing 3,5-di-tert-4-butylhydroxytoluene 0.01% (w/v)
as antioxidant agent. Samples were subsequently centrifuged at
3000 rpm for 10 min, supernatants were collected, and solvents eva-
porated under reduced pressure at 45 °C. Dry residues were re-
suspended in an acetonitrile/isopropanol/chloroform/water
(35:35:20:10 v/v/v/v) mixture before injection into the UPLC-MS
system. Liquid chromatography-electrospray ionization mass spectro-
metry analysis of lipid extracts was performed on a Synapt®G2 High
Definition MS™ (Q-TOF) mass spectrometer (Waters®) combined with a
UPLC system (Waters®). Chromatographic separation was performed on
an Acquity® CSH C18 column (100X 2.1 mm; 1.7 pm) set at 50 °C.
Lipids were eluted using a binary gradient system consisting in 10 mM
ammonium acetate in an acetonitrile/water mixture (40:60, v/v) as
solvent A and 10 mM ammonium acetate in an acetonitrile/isopropanol
mixture (10:90, v/v) as solvent B. The eluent increased from 40% B to
100% B in 10 min and was held at 100% B for 2 min before a return to
40% B followed by an equilibration period of 2.5 min. The flow rate
was kept at 0.4 mL/min for 15 min. Data were collected in the full scan
mode at m/z 50-1200 in both positive (ESI+) and negative (ESI—) ion
modes. The source parameters were as follows: capillary voltage 3000 V
(ESI+) and 2400 V (ESI—), cone voltage 30 V (ESI+) and 45 V (ESI—),
source temperature 120 °C, desolvation temperature 550 °C, cone gas
flow 20 L/h, and desolvation gas flow 1000 L/h. Leucine enkephalin
(2 ng/mL) was used as the external reference compound (Lock-Spray™)
for mass correction. Data were acquired in the so-called resolution
mode (20,000 FWHM a m/z 500) with a scan time of 0.1 s. Data ac-
quisition was managed using Waters MassLynx™ software (version 4.1;
Waters MS Technologies).

2.6.3. Data pre-processing

Raw data files (.raw format) acquired on UPLC-ESI-MS were pro-
cessed using XCMS set up with parameters suitable for high resolution
LC-MS, to generate in both ESI+ and ESI—, a matrix listing peak areas
associated to a unique m/z and retention time. These matrixes were
normalized and filtered as previously described [41].

2.6.4. Lipid structure assignment

The structure assignment of lipids was based on the following cri-
teria. An annotation of lipid species was first performed through the use
of the online databases LIPID MAPS and METLIN using the mass ac-
curacy with a tolerance window of 5 ppm. The annotation was con-
firmed using retention time. Indeed, by using the UPLC-ESI-MS analysis
of the standard lipid mixture, each lipid class can be determined by the
linear relationship between retention time and equivalent carbon
number [41]. Finally, MS/MS fragmentation data was used to provide
structural information on the annotated lipid structure.

2.6.5. Lipid amount estimation

The lipid quantities, expressed as mol%, were estimated using in-
ternal standard lipid mixture spiked in cell suspension samples before
extraction, according to procedure in agreement to current guideline
[42]. Indeed, lipid species intensities were individually normalized to
the one of the corresponding internal standards chosen in the same
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subclass. The standard lipid mixture includes one lipid species re-
presentative of each investigated subclass (Supplementary Table S2).
Lipid species used as internal standard contain fatty acid side chain
with total odd carbon number or are deuteriated derivatives and thus
cannot overlap with endogenous lipid species.

2.7. Gene expression analysis by RT-qPCR

Dry cell pellets were stored at —80 °C until analysis. Total RNAs
were extracted from cells using Nucleospin® RNA kit (Macherey Nagel,
Neumann-Neander, Germany). RNA content was measured using a
Nanodrop Detector (ND-1000 spectrophotometer, ThermoFischer
Scientific). Reverse transcription was performed with 600 ng RNA using
Multiscribe reverse transcriptase (TagMan® Reverse Transcription
Reagents, Applied Biosystems, Life Technologies). Concentrations of
each sample were adjusted to 5 ng/uL of cDNA. The reaction mixture
was preheated at 50 °C for 2 min, followed by 40 cycles (95 °C for 15 s
and 60 °C for 1 min). Target cDNA was amplified using the 7300 Real-
Time PCR system (Applied Biosystems, Life Technologies) with
Tagman® probes for IL1B (Hs015554136), IL6 (Hs00174131), CCL2
(Hs00234140), CerS2 (Hs00371958), SMPD2 (Hs00906924), ASAH2
(HsO1015655), DGAT1 (Hs01020362), PLA1 (Hs01056915) (Thermo
Fisher Scientific, Saint-Quentin-Fallavier, France). Each assay was
normalized by amplifying the housekeeping c¢DNA HPRT
(Hs02800695). Changes in mRNA expression were calculated according
to the 274" method (CT, cycle threshold), with ACT = CTyrger
gene CTHPRT and AACT = ACTstimulated - ACTcontrol-

2.8. PLA; activity assay

PLA, activity was determined using Red/Green BODIPY based
EnzCheck Phospholipase A, assay kit (Thermo Fisher Scientific) ac-
cording to manufacturer procedure. Briefly, cells were incubated for
24 h with BAK or HO in 6-well cell culture plates. Culture media was
removed, and cells were washed with DPBS. Harvested cells were
centrifugated, DPBS removed and cell pellet was suspended in 100 L of
PLA, reaction buffer with protease inhibitor and finally sonicated for
10 s. A volume of 50 pL of cell lysate were then transferred in a 96 well
plate and mixed with liposomes prepared with the EnzChek
Phospholipase A, substrate at a ratio of 1:1. Following a 30-minute
incubation at 37 °C in the dark, PLA, activity was determined as a FRET
ratio (hex = 460 nm A, = 515/575 nm). Fluorescence was measured
using a spectrofluorometer Spark® (TECAN, Neuville-Sur-Oise, France).

2.9. Statistical analysis

Unsupervised and supervised multivariate analyses were performed
using SIMCA-P + software version 13.0.3 (Umetrics, Umed, Sweden) as
previously described [40,41,43]. Briefly, a Pareto scaling was applied to
the variables prior to unsupervised principal component analyses (PCA)
and supervised partial least squares-discriminant analyses (PLS-DA).
Permutation tests on the class labels were conducted to assess over-
fitting of models. Orthogonal partial least squares discriminant analyses
(OPLS-DA) model was subsequently built based on the corresponding
selected PLS-DA models. S-plot was generated from each OPLS-DA
model to investigate the lipids involved in the statistically significant
differences between control cells and exposed cells. A cross-validated
analysis of variance (CV-ANOVA) was carried out on each supervised
model to assess the statistical significance of group separation. Finally,
a misclassification test was performed to validate the models. Uni-
variate data analysis (Wilcoxon) with a false discovery rate [(FDR)-
adjusted p < 0.01] controlling the false-positive rate associated with
multiple comparisons, was performed to assess the whole lipids iden-
tified and the statistical significance of the difference in BAK- or HO-
treated cells vs control cells.

Each experiment was performed independently at least three times.
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Results are expressed in percentage compared to control and are pre-
sented as means * standard deviation (SD). The statistical analyses
were performed using GraphPad Prism 7 software (GraphPad Software,
La Jolla, CA). Verification of the normality assumption with an
Agostino-Pearson test was first performed. The comparison of the
means of more than two groups was then performed using ANOVA test
followed by a Dunnet multiple comparison test with a risk set at 0.05.
Comparisons of two averages were done using a Student t-test and after
normality assessment. The significance thresholds compared to control
were: *p < 0.05, **p < 0.01, ***p < 0.001.

3. Results

3.1. Cell viability, reactive oxygen species and inflammatory cytokines
production following exposure of HCE cells to BAK or HO

Human corneal epithelial cells were exposed for 24 h to BAK con-
centrations ranging from 107%% to 1073% or to HO values ranging
from 350 to 600 mOsM respectively. Both BAK and HO led to a sig-
nificant decrease in viability (data not shown). For subsequent experi-
ments, cells were exposed to 10~ %% BAK concentrations, and 500
mOsM HO corresponding to a decrease in viability of 40%
(p < 0.001), and 35% (p < 0.001) (Fig. 1A) respectively. A 24-hour
exposure of HCE to BAK 10~ *% led to a ROS production increase of
190% (Fig. 1B). In contrast, HO 500 mOsM did not induce any change
in ROS production (Fig. 1B). While BAK led to an increase in gene ex-
pression of ILIB (p < 0.05) and IL6 (p < 0.01), HO induced a sig-
nificant enhancement of the CCL2 (p < 0.01) and IL6 (p < 0.001)
gene expressions (Fig. 1C).

3.2. Lipid distribution

HO led to the formation of lipid droplets in the cytoplasm of HCE
cells (Fig. 2A). Indeed, size area (Fig. 2B) and number of lipid droplets
(Fig. 2C) were significantly increased after HO exposure. In contrast,
BAK did not induce any change in neutral lipids. It is noteworthy that
following HO exposure, the number of LD per HCE cell is lower when
staining is performed using Red Oil O than in Nile Red. This dis-
crepancy is related to the fact that droplet fusion specifically occurs in
Red Oil O staining protocol [44].

3.3. Changes in lipid composition of HCE cells exposed to BAK or HO
To investigate the impact of BAK or HO exposure on the lipid

composition of HCE cells, we performed an untargeted lipidomic ana-
lysis using liquid chromatography coupled to mass spectrometry

A

w
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(UPLC-MS). Typical UPLC-ESI-MS in positive (ESI+) and negative
(ESI—-) ion mode chromatograms of cell lipid extracts from HCE cells
are displayed in Fig. 3. In positive ion mode, lysophospholipids (LP) and
monoacylglycerols (MG) appear between 1.8 and 3 min, phospholipids
(Phosphatidylcholine PC, Phosphatidylethanolamine PE, Phosphatidy-
linositol PI, phosphatidylglycerol PG and phosphatidylserine PS) and
sphingolipids (Sphingomyelin SM and Ceramide Cer) between 5 and
8 min, Diacylglycerol (DG) between 6 and 9 min and Triacylglycerol
(TG) between 8 and 11 min. In negative ion mode, fatty acid (FA) is first
eluted before 6 min, followed by Cers and phospholipids (PE, PI, PA,
PG, and PS) between 6 and 9 min.

Validation of the lipidomic analysis was performed as previously
described [40,41]. Briefly, an unsupervised principal component ana-
lysis (PCA) was performed based on three quality controls (QCs) dilu-
tions (QC 1/1, 1/3 and 1/6). The built PCA model for the ESI+ and
ESI— analysis showed compact clusters of replicates for each QC levels
(Supplementary Fig. S1) thus confirming that differences between
biological samples were not related to analytical variations.

Unsupervised analysis (PCA) comparing BAK-exposed and control
cells was first performed. Both in ESI+ and ESI—, the score plots
corresponding to the PCA model which had been created clearly ex-
hibited two clusters ascribed to BAK-exposed and control cells (Fig. 3B).
The percentage of explained and predicted variances generated ex-
hibited a moderate value for data acquired in ESI+ (R = 0.42,
Q? = 0.32) and a quite high one for data acquired in ESI— (R? = 0.62,
Q? = 0.52). Unsupervised analysis was also performed to compare the
lipidomes of HO-exposed and control cells. Separation between the HO-
exposed and control groups was clearly displayed in the score plots
(Fig. 3B). The percentage of explained and predicted variances gener-
ated showed a moderate value for data acquired in ESI+ (R? = 0.47,
Q? = 0.43) and a good one for data acquired in ESI- (R* = 0.77,
Q* = 0.67).

The analysis of the data set corresponding to BAK exposure led to
the selection of 1200 variables exhibiting a p(corr) value > 0.7 from
the S-Plot (Fig. 3C). Among these discriminant variables, 168 were
identified as lipids, 120 species were increased and 48 were decreased.
Accordingly, exposing HCE cells to BAK led to an increase of sphingo-
lipids including 13 Cer and 10 SM species while 4 hexosylceramides
were decreased (Fig. 4A). Moreover, the cell level of 17 PC and 14 PE
species was significantly decreased while three LPC and two LPE species
were enhanced. Finally, seven DG species were decreased, among
which three compounds contained saturated or mono-unsaturated fatty
acid (Fig. 4A).

Exposure of HCE cells to 500 mOsM HO made it possible to select
1102 variables with a p(corr) > 0.7 on the corresponding S-Plots
(Fig. 3C). A total of 132 lipids were identified, 87 lipids being increased
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and 45 decreased. Results show an increase in sphingolipid species,
including 7 Cer and 5 SM (Fig. 4). Among glycerophospholipids, only
one LPC species decreased while 2 increased and 6 PC and 9 PE in-
creased. Finally, 56 TG species exhibited an increased cell level
(Fig. 4A).

The Venn diagram displayed the lipid species modulated in a
common and specific manner following exposure of the HCE cells to
BAK or HO (Fig. 4B). At the lipid class levels, both BAK and HO re-
spectively increased and decreased the total sphingolipid and phos-
pholipid cell level (Fig. 4C). In contrast, following exposure of HCE cells
to HO, the level of glycerolipids was strikingly increased while fatty
acid content was decreased.

3.4. Gene expression and activity of enzymes involved in lipid metabolism

To investigate the origins of the lipidome changes of HCE cells ex-
posed to BAK or HO, we assessed the gene expression of several key
enzymes involved in lipid metabolism. Regarding metabolism of
sphingolipids (Fig. 5A), the total cell level of Cer and SM was increased
following exposure to BAK or HO (Fig. 5B). The gene expression study
showed that ASAH2, CerS2 and SMPD2 were significantly up regulated
after exposure to HO (p < 0.01) while incubation with BAK induced
no change in expression of these genes (Fig. 5C). As total TG cell level
was increased following exposure to HO (Fig. 6A), enzymes involved in
TG biosynthesis (Fig. 6B) were also investigated. Results showed an
increase in DGAT1 gene expression (p < 0.01) following HO exposure.
In contrast, no DGATI modulation was observed after BAK exposure
(Fig. 6C). Phospholipid metabolism (Fig. 7B) was also investigated as
BAK and HO induced an increase and a decrease of LPC species, re-
spectively (Fig. 7A). Indeed, HO exposure led to an increase in gene
expression of PLA1 (p < 0.01) while BAK did not induce such change
(Fig. 7C). Exposure of HCE cells to BAK and HO induced an increase of
PLA, activity of 35% (p < 0.05) and 31% p < 0.05), respectively
(Fig. 7D).

4. Discussion

Dry eye disease is a chronic inflammatory pathology of the ocular
surface with significant impact on everyday life for patients. Despite its
high prevalence, only few treatments are available. It is thus important
to better understand molecular mechanisms of the pathology in order to
develop new targeted treatments and to find new markers to improve
patient monitoring. Lipids are now recognized as mediators of the

signal transduction with molecular impact on cell homeostasis and with
an important role in inflammatory process. Our purpose was therefore
to investigate the lipid changes in an in vitro model of human epithelial
corneal cell line, exposed to BAK or hyperosmolarity (HO). These both
cell stress, HO, key feature in the pathophysiology of DED and BAK,
common eye drop excipient, are known to be contributing factor of this
eye disease [9].

BAK concentration and HO value were chosen according to eye drop
concentration for BAK and HO value determinated in the context of
DED and also using HCE cell viability assays and previously published
reports. Indeed, a 24-hour exposure to BAK 10~ %% or HO 500 mOsM
leads to a significant decrease in cell viability associated to an increase
in gene expression of pro-inflammatory cytokines as previously de-
scribed in DED patients [45,46]. Our results are in accordance with
previous studies investigating BAK and HO [20,47,48]. It must be
emphasized, that the aforementioned BAK concentration is 1/50 to 1/
200 times that wused in commercially available eye-drops
(0.005%-0.02%). Regarding HO, in DED patients, mean HO levels
range from 310 to 330 mOsM [5] and values up to 800 mOsM have
been previously reported in tears of DED patients [49]. In addition, a
HO level of 500 mOsM has been widely used in in vitro models of DED
[21,23,24,50].

In order to exhaustively list the lipid species which level is modified
following BAK or HO exposure in HCE, we performed an untargeted
lipidomic analysis involving UPLC-ESI-HRMS as well as supervised and
unsupervised multivariate analyses. Indeed, this analytical approach is
recognized to be able to extensively characterize qualitative and
quantitative changes in lipid composition without a priori, especially in
cells [40,51]. In HCE incubated either to BAK 10~ *% or to HO 500
mOsM, three main lipid classes display marked alterations: sphingoli-
pids, glycerolipids and glycerophospholipids.

In HCE exposed to BAK or HO, a major change in sphingolipid level
was observed. Changes involving this lipid subclass were previously
reported in a 3D-reconstructed human-cornea-like epithelium exposed
to 0.1% BAK and in a human corneal cell line exposed to HO [52,53]. In
our study, both BAK and HO also increased ceramide species levels,
especially Cer (44:2), Cer (42:2), Cer (36:2) and Cer (34:1). HO mainly
increased long chain ceramides. This result is consistent with an in-
crease in gene expression of CerS2 also only confirmed in HCE cells
exposed to HO. Indeed, CerS2 catalyzes acylation of sphinganine or
sphingosine by C20 to C26 fatty acid to form dihydroceramides and
ceramides, respectively [26]. In contrast, BAK mainly increasing short
chain ceramides is therefore not expected to change in CerS2 gene
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Fig. 3. Liquid chromatography time-of-flight mass spectrometry-based lipidomics analysis following BAK or HO exposure. Chromatograms (A) and PCA built models
(B) of control and exposed HCE cells. Variable selections for lipid annotation were based on S-Plot (C). Score plots of BAK-exposed and control cells are presented in
both ESI+ (B1) and ESI— (B3). Metabolites with significant changes in cellular level between BAK-exposed and control cells are presented in ESI+ (C1) and ESI—
(C3) S-plots (orange boxes delimited the variables of interest). Score plots of HO-exposed and control cells are presented in both ESI+ (B2) and ESI— (B4) ion modes.
Metabolites with significant changes in cellular level between HO-exposed and control cells are presented in ESI+ (C2) and ESI— (C4) S-plots (orange boxes
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expression. It would be of interest to investigate gene expression of
CerS6, an enzyme specifically catalyzing short chain ceramide bio-
synthesis. Beside de novo synthesis, ceramides are produced through the
cleavage of sphingomyelins by sphingomyelinase enzymes. nSMase2
gene expression was increased following HO exposure, suggesting that

ceramide accumulation could be due to sphingomyelin hydrolysis, as
previously reported after a 2 hour-HO exposure in corneal cells [52].
Metabolism of ceramides also includes degradation into sphingosines
via a ceramidase, especially ASAH2, an enzyme whose gene exhibited
an increased expression in HCE exposed to HO. Mechanisms of Cer
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accumulation involve different metabolic pathways related to specific
cell locations. On one hand, de novo synthesis of ceramides takes place
in the endoplasmic reticulum and involves enzymes such as serine
palmitoyl transferase and ceramide synthase. On the other hand, the
hydrolysis of SM into Cer can be achieved at the plasma membrane by
neutral SMase but also in lysosomes by acid SMase. In dry eye disease
models, a global profiling of the enzymes involved in the synthesis of
ceramides could be of particular interest to target one or more enzymes

to be investigated in subsequent pharmacological studies.

Ceramides promote inflammation through IL-1B release, induce
apoptosis and alter cell survival through PKC{ and PP2A activation
[27,54,55]. Ceramides thus play key roles in various cell processes, and
the dysregulation of ceramide metabolism is involved in many in-
flammatory diseases such as atherosclerosis, inflammatory bowel dis-
ease or multiple sclerosis [28,56,57]. Our results show that HO leads to
an increase in both CerS2 and CCL2 gene expression. On one hand, de
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Fig. 6. Alteration of glycerolipid metabolism. (A) Change in total DG and TG levels following BAK or HO exposure. (B) Metabolic pathways of glycerolipids. (C) Gene
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novo synthesis of ceramide was shown to induce a CCL2 release in a
macrophage cell line [58] and on the other hand, HO is a well-known
inducer of CCL2, stimulating gene expression and protein release
[22,24,48]. De novo synthesis of ceramide may thus stimulate CCL2
release leading to the recruitment of macrophages which, in turn,
triggers inflammatory pathways. In contrast to HO, incubation with
BAK did not modify CerS2 and CCL2 gene expression in HCE.

The increase in ceramide levels, described in our study, following a
24-hour incubation of HCE with BAK or HO, previously reported by
Robciuc et al. but following a shorter exposure of 2 h, indicates effect
during at least 24 h. In a short time exposure, Cer is produced through
the action of SMase, a well-known mechanism occurring in the acute
phase of apoptosis, while our study indicates that following a 24-hour
exposure, de novo synthesis pathway is also involved. Regarding
apoptosis and inflammatory process induced by this lipid subclass [59],
ceramides may be regarded as important mediators of the deleterious
effects due to HO or BAK.

The present untargeted lipidomic analysis indicates a striking in-
crease in TG species induced by HO exposure. This result is supported
by lipid droplet (LD) formation and by DGATI gene overexpression in
the HCE cells. HO is known to induce LD formation in renal as well as
corneal epithelial cells [52,60] and DGAT1 is one of the main enzymes
involved in TG biosynthesis. LD is an active field of research because
their role has been described as either protective or deleterious [61,62].
Indeed, LD is involved in free fatty acids storage playing a protective
role against cell lipotoxicity [62,63]. However, LD are also known to be
deleterious to cells as they are key effectors of inflammation [64],
especially through the COX2 activity, an enzyme located in LD cata-
lyzing synthesis of pro-inflammatory eicosanoids [64]. We may thus
hypothesize that HO leads to eicosanoid formation. A target lipidomic
analysis would therefore be valuable to assess eicosanoid level changes
after BAK and HO exposure. In consistency with our results, an increase
in COX2 protein was reported in primary epithelial corneal cells and in
a conjunctival cell line after HO exposure [21,65]. LD could therefore
be explored as a cell marker of hyperosmolarity of the ocular surface.

In vitro BAK exposure led to both a striking decrease in PC and PE
associated to an increase in LPC and LPE. These results are in complete
agreement with the increase of PLA, activity, the enzyme responsible
for the sn, acyl chain hydrolysis of phospholipids. Furthermore, an
important decrease in PC-O (36:4) level which contains arachidonic
acid in sn, position was especially observed. This result may be

expected since PC containing arachidonic acid in sn, position is a key
substrate of PLA, enzyme. As PUFA are mainly targeted by PLA,, the
decrease in PC (0-18:0/22:6) level may also be related to the increase
of DHA rate which could constitute a cell response against BAK ex-
posure. As an increase of PLA, has been previously reported in tears of
DED patients [66], this enzyme could thus promote BAK toxicity in
human corneal epithelial cells. Indeed, it was demonstrated that in a
macrophage cell line, LPC promote inflammation through IL-6 and
TNFa release [67,68]. In addition, in vitro, LPC triggers signaling
pathways of TLR4, a major lipopolysaccharide pattern recognition re-
ceptor widely described in DED pathophysiology [2,69,70]. LPC may
thus contribute to inflammation mediated by BAK and hence, play a
role in its toxicity.

In contrast, HO exposure induced a marked increase in PE levels. A
similar change has been previously described in renal cells exposed to
HO [60]. A slight decrease in LPC levels associated to an increase in
PLA1 gene expression was also exhibited. PLA; catalyzes LPC conver-
sion to glycerylphosphorylcholines, known to be osmoprotective com-
pounds. Our results are compatible with the previously reported in-
crease in glycerylphosphorylcholine level in the IOBA-NHC
conjunctival cell line exposed to HO [65]. Furthermore, a metabolomic
study on DED patient serum exhibited glycerylphosphorylcholine and
lysolipid changes [71] indicating an alteration of this lipid subclass, in
consistency with our results. Increase in catabolism of PC may thus be
regarded as a self-protective mechanism of cells to osmotic stress via
osmoprotective glycerylphosphorylcholine [72].

In addition, numerous PC, PE and PI plasmalogen species are
strikingly decreased in HCE cells under BAK or HO exposure. This result
may be explained by the fact that vinyl ether located in sn; position is
very sensitive to oxidative stress [73,74]. Oxidative stress is known to
be part of the mechanisms explaining deleterious effect observed under
BAK and HO exposure [20,75,76]. An increase in ROS production ob-
served in HCE cells following a 24-hour exposure of BAK reinforced the
above observations. In contrast, HO exposure did not lead to any ROS
production after 24 h. Nevertheless, it has been shown that HO lead to
oxidative stress but only following 1 to 3 hour exposure [21]. Regarding
oxidative stress in DED pathophysioplogy, plasmalogen species may
finally be regarded as cell marker.

In summary, exposure of HCE to BAK or HO highlights a large set of
lipid mediators modulation. Interestingly, these two in vitro models
showed common and specific alterations in the cell lipidome. An
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overview of major lipid alterations reported in this study is displayed in
the Fig. 8. While ceramides were increased both after BAK or HO ex-
posure, changes in glycerolipids and phospholipids depend on the type
of the stressor involved. Indeed, TG accumulation and LD formation
were specifically induced by HO while a slight TG decrease arose fol-
lowing BAK exposure. Moreover, LPE and LPC drastically decreased
following HO exposure, while BAK induces an increase in these two
lipid subclasses. Using epithelial corneal cells exposed to BAK, a mi-
crobicidal, detergent and pro-oxidative agent, or HO, a pathophysio-
logical feature of DED, this untargeted lipidomic investigation showed
common and contrasted cell lipid alterations. It also underlines the
weight of lipid metabolism in cell death and inflammation processes.
Finally, all the impacted lipid species could be tightly intricated in a
metabolic network underlying specific regulation pathways in addition
to other biological processes.

10

5. Conclusion

From a clinical point of view, the lipid changes specific to BAK or
HO observed with this human corneal cell line provide new insights in
DED diagnosis. Our study also highlights alterations in the metabolism
of sphingolipids, an important bioactive lipid class involved in in-
flammatory processes, thus opening a new way to consider their role in
the DED pathophysiology. Moreover, this study provides new perspec-
tives in the research of biomarkers and therapeutic targets involving
cellular lipids in DED.
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