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Abstract

Cholesterol-5,6-epoxides (5,6-ECs) are
oxysterols (OS) that have been linked to sev-
eral pathologies including cancers and neuro-
degenerative diseases. 5,6-EC can be produced
from cholesterol by several mechanisms
including reactive oxygen species,
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lipoperoxidation, and  cytochrome P450
enzymes. 5,6-EC exists as two different
diastereoisomers: 5,6a-EC and 5,63-EC with
different metabolic fates. They can be pro-
duced as a mixture or as single products of
epoxidation. The epoxide ring of 5,6a-EC
and 5,6B-EC is very stable and 5,6-EC is
prone to hydration by the cholesterol-5,6-
epoxide hydrolase (ChEH) to give
cholestane-3f,5a,6f-triol, which can be fur-
ther oxidized into oncosterone. 5,60-EC is
prone to chemical and enzymatic conjugation
reaction leading to bioactive compounds such
as dendrogenins highlighting the existence of a
new metabolic branch on the cholesterol path-
way centered on 5,6a-EC. We will summarize
in this chapter current knowledge on this path-
way which is controlled by the ChEH.
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8.1 Introduction

The epoxide hydrolases (EHs) constitute a family
of enzymes present in all organisms, which trans-
form epoxide containing lipids by the addition of
water to give a trans-diol. An epoxide
(or oxirane) is a three-membered cyclic ether.
Five EHs have been described in vertebrates
which are: soluble EH (sEH), microsomal EH
(mEH), cholesterol EH (Cholesterol-5,6-epoxide
hydrolase or ChEH), hepoxilin hydrolase, and
leukotriene A4 (LTA4) hydrolase (Morisseau
2013; Newman et al. 2005). ChEH
(EC 3.3.2.11) represents a distinct subset among
EHs with respect to its substrate specificity, activ-
ity, and molecular identity. ChEH is very selec-
tive for the cholesterol-5,6-epoxide (5,6-EC)
diastereoisomers: cholesterol-5a,6a-epoxide
(5,6a-EC) and cholesterol-5f,6p-epoxide
(5,6B-EC) and catalyzes their stereoselective
hydration into cholestane-3p,5x,6f-triol
(CT) (Silvente-Poirot and Poirot 2012; Sevanian
and Mcleod 1986; Nashed et al. 1985) (Fig. 8.1).
ChEH has stimulated the interest of researchers
when 5,6-EC was suspected of being involved in
skin carcinogenesis (Chan and Black 1974; Lo
and Black 1973; Black and Lo 1971). Because of

Fig. 8.1 The cholesterol-
5,6-epoxide hydrolase
(ChEH) catalyzes the trans

hydration of 5,6a- and
5,6p-epoxycholesterol to
give cholestane-
3B,50,6p-triol

-
[ ‘:‘{

5a, 6u epoxy-cholesterol
(5,60-EC)

- [_..l___r_ D

50,6B3-epoxy-cholesterol
(5,6B-EC)

-

P. de Medina et al.

the presence of the epoxide group, it was sup-
posed that 5,6-EC could react spontaneously with
nucleophiles and behave like alkylating agents
with direct carcinogenic properties. However,
contradictory results were published concerning
the potential carcinogenic and mutagenic effects
of 5,6-ECs. This was reviewed in (Poirot and
Silvente-Poirot 2013). In addition, the potential
alkylating activity of 5,6-EC was recently ruled
out by showing that 5,6-EC is stable and
un-reactive ~ toward  nucleophiles  under
non-catalytic conditions (Paillasse et al. 2012).
The present review is focused on ChEH and its
relationship with cholesterol biosynthesis in con-
nection with cancer and neurodegenerative
diseases.

8.2 The ChEH Enzyme

ChEH was characterized at the molecular level as
being a pharmacological target of tamoxifen, a
drug widely used and approved by the FDA for
the treatment and the prevention of breast cancers
(BC) expressing the estrogen receptor alpha
(ESR1). The ChEH is a hetero-oligomerous pro-
teinaceous complex made mainly of two different
enzymes involved on the post-lanosterol choles-
terol biosynthesis: (1) the 3p-hydroxysteroid-
A8,A7-isomerase also named as the emopamil-
binding protein (EBP) or delta8-delta7-isomerase
(D8D7I), which catalyzes the isomerization of
zymostenol (5a-cholest-8-en-3p-ol) and
zymosterol (Sa-cholestadien-8,24-en-3f-ol) into

ChEH \,(f ]r:w' /
HO “\/’ /'
{
Ho &,

Cholestane-38 ,5a,63 -triol
(CT)
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Fig. 8.2 The ChEH is heterodimer of EBP and DHCR7. EBP is the catalytic subunit and DHCR?7 is the regulatory

subunit

lathosterol (5a-cholest-7-en-33-ol) and
24-dehydrolathosterol (Sa-cholestadien-7,24-en-
3p-ol), respectively; (2) the 3p-hydroxysteroid-
A7-reductase (DHCR?7) that converts
7-dehydrocholesterol and 7 (cholesta-5,7-dien-
3B-ol) and (cholesta-5,7,24-trien-3f-ol) into cho-
lesterol and desmosterol. EBP and DHCR7 were
found necessary and sufficient to reconstitute the
ChEH (De Medina et al. 2010; Kedjouar et al.
2004). EBP was shown to carry out the catalytic
activity of the ChEH, while DHCR7 was
the regulatory subunit of the CHE (Fig. 8.2).
The crystal structure of EBP was published in
the presence of Tamoxifen (PDB: 60HU) (Long
et al. 2019). Tamoxifen was shown to be a com-
petitive inhibitor of ChEH (De Medina et al.
2010), and docking experiments of EBP showed
that 5,6-EC fits well within the tamoxifen binding
site of EBP (Fig. 8.3). Our team reported that the
ChEH was identical to the microsomal anti-
estrogen binding site (AEBS), a high affinity
microsomal binding site for tamoxifen and related
compounds (Leignadier et al. 2017; De Medina
et al. 2010; Kedjouar et al. 2004). It was found
that all the tested AEBS ligands were inhibitors of
the ChEH and oxysterols known as substrates or
inhibitors of ChEH were found ligands of the
AEBS(De Medina et al. 2010; Sevanian and
Mcleod 1986). It was also found that their affinity
for the AEBS correlated positively with their
potency to inhibit the ChEH (De Medina et al.
2010). Other proteins such as the microsomal
epoxide hydrolase (mEH) and the 3-
B-hydroxysteroid-A24-reductase (DHCR24)
were found to affect ChEH activity and the
AEBS pharmacological profile when

co-expressed with EBP and DHCR7 (M Poirot,
unpublished results). ChEH is a promiscuous
enzyme that binds drugs belonging to different
pharmacological classes including selective estro-
gen receptors modulators such as Tamoxifen,
diphenylmethane compounds such as tesmilifene,
phenothiazines, and amiodarone (Silvente-Poirot
and Poirot 2012). It includes also natural
compounds such as B-ring oxysterols (CT,
OCDO, 7-hydroxy- and 7-ketocholesterol)
(Silvente-Poirot and Poirot 2012), dendrogenin
A (De Medina et al. 2013), and polyunsaturated
fatty acids including oleic, arachidonic, and
docosahexaenoic acids (De Medina et al. 2010).
Recent inhibitors of EBP such as TASIN
inhibitors developed for the treatment of colorec-
tal cancers (Theodoropoulos et al. 2020; Wang
et al. 2019; Zhang et al. 2018; Zhang et al. 2016)
or for the remyelination of dendrocytes (Sax et al.
2022; Caprariello and Adams 2022; Han and
Zhou 2019; Hubler et al. 2018) have been
reported. These compounds are likely to be
ChEH inhibitors and their evaluation deserves
further investigations.

8.3  5,6-EC Formation and Stability
The ChEH activity requires 5,6-EC for producing
its hydration product CT. Conditions that were
listed to be required for 5,6-EC production have
been reviewed before (Poirot and Silvente-Poirot
2013) (Fig. 8.4). These include some reactive
oxygen species, lipoperoxidation, and cyto-
chrome p450 for the stereoselective production
of 5,6a-EC. The existence of a cytochrome p450
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Fig. 8.3 Molecular
modeling of the putative
catalytic site of the ChEH
after docking of 5,63-EC
into the EBP. (a)
Two-dimensional
topography of the ILE
tamoxifen binding site on
EBP (obtained using
Discovery Studio v 2021).
(b) Two-dimensional
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binding site on EBP
highlighting that ASN193
could act as a proton donor
as catalyst of the
5,6-epoxide ring opening.
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involved in the stereoselective production of
5,60-EC (Watabe and Sawahata 1979) supports
the existence of specific metabolic branch based
on 5,6a-EC transformation. Interestingly, recent
studies from Zielinski et al showed that choles-
terol epoxidation with a peroxyde can give vari-
able ratios of both diastereoisomers depending on
the presence of a proton donor at proximity of the
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reaction (Zielinski and Pratt 2019). This suggests
that even lipoperoxidation could give one or the
other isomer as a main product according to the
biochemical context in which the reaction takes
place.

It was postulated that 5,6-EC could be potent
alkylating substances, like other chemicals bear-
ing epoxide groups such as styrene oxides, but
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Cholesterol

Cytochrome P4507?

5,6p-EC

autoxidation
lipoperoxidation

Cytochrome P450

HOJ__ Y

O

5,6a-EC

Fig. 8.4 5,6-EC formation and biosynthesis. 5,6-EC can be produced from cholesterol by different nonenzymatic and

enzymatic mechanisms

5,6-EC has been shown not to be carcinogenic
when injected on rat nipples (El-Bayoumy et al.
1996). While 5,6-EC is known since a very long
time (Schroepfer 2000), it is only recently that
their reactivity toward nucleophilic substances
including nucleic acid bases was tested. 5,6-EC
was shown to be exceptionally stable and totally
un-reactive toward nucleophiles including gua-
nine, at ambient and physiological temperature,
as opposed to the carcinogen styrene-oxide
(Paillasse et al. 2012). Importantly, 5,6-EC was
stable for several days in the presence of
extremely high concentrations of nucleophiles,
ruling out that 5,6-EC is spontaneously reactive
and behave like direct carcinogenic or alkylating
agents. Thus, the unreactivity of 5,6-EC
diastereoisomers toward nucleophiles suggests
that the biological function of ChEH is not to
detoxify cells from 5,6-EC by metabolizing
them into a more soluble CT as it was first
suggested (Morin et al. 1991).

8.4 ChEH Substrates

ChEH is very specific to the hydrolysis of 5,6-EC
into CT. It was shown to hydrolyze
5,6-epoxy-f-sitosterol, one of the major

phytosterol  (Aringer and Eneroth 1974).
7-dehydrocholesterol-5,6p-epoxide was reported
to be an irreversible inhibitor of ChEH (Nashed
et al. 1986) (Fig. 8.5). Other steroidal epoxides
were not reported to date to be substrates or
inhibitors of ChEH. Fatty acid and sulfate esters
of cholesterol are not inhibitors of ChEH and thus
not substrate of the enzyme showing that esterifi-
cation provide against the hydration of choles-
terol-5,6-epoxides by the ChEH (De Medina
et al. 2010). Fatty acid and sulfate esters of
5,6-EC are not inhibitors of ChEH (Fig. 8.5)
(De Medina et al. 2010). Epoxides of PUFA that
were reported to be inhibitors of ChEH
(De Medina et al. 2010) have not yet being tested
as substrates and inhibitors of ChEH.

8.5  Subcellular Localization, Tissue
Distribution and Regulation

of ChEH

EBP and DHCR?7 co-localized in the endoplasmic
reticulum of cells (Koczok et al. 2019) were cho-
lesterol biosynthesis takes place (Dietschy and
Turley 2004). These enzymes are expressed in
most mammalian tissues (liver, kidney, lung,
testes, spleen, brain, intestinal epithelium, and
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Fig. 8.5 Chemical structure of (a) ChEH substrates and (b) nonsubstrates

skin), with the liver being the richest source (see
Human Protein Atlas, https://www.proteinatlas.
org/). EBP and DHCR7 together with DHCR24
have been shown to colocalize on in the nuclear
envelope (Koczok et al. 2019). Consistently,
ChEH is mainly present in the microsomes (sub-
cellular fractions that contain the reticulum endo-
plasmic) of various tissues including the liver.
ChEH is also found in tumor cells of different
tissue origins ((Silvente-Poirot and Poirot 2012)
and (M. Poirot and S. Silvente-Poirot, personal
communication)). Since EBP and DHCR7 have
been reported to be upregulated in several cancers
(Kuzu et al. 2016), it is still to be defined what
would be the impact of various EBP/DHCR7
ratio on ChEH activity.

8.6  Biological Functions

of the ChEH

ChEH enzymatic function is to produce CT and to
control 5,6-EC levels. So we must consider the
metabolism and the biological properties of CT,
5,6a-EC and 5,6B3-EC and their metabolites.

8.6.1 Biological Properties of CT

and Its Metabolites

CT was reported to be one of the most potent
cytotoxic oxysterol (Schroepfer 2000), with little
effect on cholesterol biosynthesis downregulation
(Morin and Peng 1989). It was reported to inhibit
the osteoblastic differentiation and to induce apo-
ptosis suggesting it is a common factor underly-
ing the pathogenesis of atherosclerosis and
osteoporosis (Liu et al. 2005). CT was shown to
inhibit prostate cancer cell proliferation migration
and invasion via a modulation of LXR (Lin et al.
2013). CT has been shown to be a
neuroprotective endogenous compound that
protects against neuronal injury by direct binding
and by inducing a negative modulation on
NMDA receptors (Hu et al. 2014). CT suppresses
neuronal hyperexcitability through a direct inter-
action with the voltage-gated sodium channel
(Tang et al. 2018). CT was shown to induce
vascular smooth cells calcification, which may
be a mechanism through which CT favors the
formation of the atherosclerotic plaque (Liu
et al. 2004, 2007).
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On the other side, CT has been shown to be a
precursor of secondary metabolites involved in
the control of carcinogenic programs. CT is
genotoxic through reactive oxygen species pro-
duction (Cheng et al. 2005) and can be
metabolized into oncosterone by the 11-
B-hydroxysteroid  dehydrogenase of  type
2. Oncosterone was shown to be a tumor pro-
moter in breast cancer and is a ligand of GR and
LXR (Voisin et al. 2017). Oncosterone is a biased
agonist on GR that drives cellular proliferative
programs (De Medina et al. 2021; Silvente-Poirot
et al. 2018a; Poirot et al. 2018; Voisin et al.
2017).

CT is probably also prone to sulfation by the
sulfotransferase =~ SULT2B1b, since B-ring
oxysterols are substrates of the enzyme but this
deserves further evaluation (Fuda et al. 2007) and
should give cholestane-5a,6p-diol-3p-O-sulfate
(CDS) which could serve as a modulator of
LXR (Song et al. 2001). However, assessment
of the biological properties of CDS is difficult
because it can be hydrolyzed by the steroid sulfa-
tase (STS) which is widely expressed in human
tissues (https://www.proteinatlas.org/
ENSGO00000101846-STS/tissue) to give back
CT from CDS. So recently de Medina et al.
have developed a non-hydrolyzable analog of
CDS to test if CDS could be a biologically active
metabolite (de Medina et al., Manuscript submit-
ted for publication). CT is also known as a bio-
marker of several pathologies (Zanjani et al.
2023; Unluturk et al. 2023; Cooper et al. 2020;
Vonica et al. 2019; Reddy et al. 1977) and
inherited diseases such as Niemann—Pick C1 dis-
ease (Porter et al. 2010).

8.6.2 Biological Properties of 5,63-EC

and Its Metabolites

5,6B-EC has not been shown to be a ligand of
LXRs and it was reported to display LXR modu-
latory activities which are cell specific (Segala
et al. 2013; Berrodin et al. 2010). 5,6B-EC is a
good substrate for ChEH and a better substrate on
whole cell assays (Voisin et al. 2017; De Medina
et al. 2010) showing that it may have a major

contribution as a preferred substrate of ChEH
for the production of CT and its metabolites
such as oncosterone. 5,63-EC does not activate
the acyl-coA:cholesterol acyl transferase
1 (ACATI1/SOATI1) and is a weak substrate of
ACATI1 (Zhang et al. 2003). It is a substrate of the
human plasma lecithin-cholesterol
acyltransferase (LCAT) (Szedlacsek et al. 1995).
5,6B-EC was shown to be a weak substrate of
SULT2B1b (Fuda et al. 2007). High
concentrations in 5,63-EC was shown to induce
cell death through the impairment of the mito-
chondrial activity (Segala et al. 2013; Vejux
et al. 2007; Lordan et al. 2007; O’Callaghan
et al. 2001).

8.6.3 Biological Properties of 5,6-EC

and Its Metabolites

5,6a-EC has been shown to be a ligand and
modulator of LXRs with cell-specific activities
(Segala et al. 2013, Berrodin et al. 2010).
5,6a-EC is one of the best substrates of the
sulfotransferase SULT2B1b (Fuda et al. 2007)
to give 5,60-epoxy-cholesterol-3f-sulfate
(5,6-ECS). 5,6-ECS was shown to act as the
mediator of the breast cancers cells
redifferentiation properties of AEBS ligands
(Segala et al. 2013) and to be a LXR modulator
(Segala et al. 2013; Song et al. 2001). 5,6a-EC is
a potent activator and substrate of the acyl-coA:
cholesterol acyl transferase 1 (ACAT1/SOAT1)
expressed on the endoplasmic reticulum of cells
to produce 5,6a-EC- and cholesteryl-fatty acid
esters (Zhang et al. 2003) while it was reported
that plasmatic lecithin-cholesterol-acyl-transfer-
ase (LCAT) contributes little for fatty acid esteri-
fication of 5,6a-EC (Yamamuro et al. 2020).
Cholesteryl esters display tumor promoter
properties (Websdale et al. 2022; Khallouki
et al. 2018; Paillasse et al. 2009) but the eventual
tumor promoter properties of 5,6a-EC-fatty acid
esters have yet not been investigated and deserve
further investigations. More interestingly,
5,60-EC is the precursor of dendrogenin A
(DDA), dendrogenin B (DDB), C17 compound
that were all found as metabolites present in
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Fig. 8.6 Chemical structure of DDA, C17, and DDB. These compounds are 5,6a-EC natural mammalian metabolites

mammalian tissues (Fig. 8.6) (Soules et al. 2019;
De Medina et al. 2013). DDA and C17 are two
regioisomers that result from the conjugation of
5,60-EC with histamine by its primary amine and
by its imidazole ring, respectively, and DDB is a
5,60-EC conjugate with a primary amine of
spermidine (Soules et al. 2019; Noguer et al.
2017; De Medina et al. 2009) (Fig. 8.6). DDA is
a bioactive conjugated oxysterol that has been
proved to be a tumor suppressor metabolite that
induces cancer cell redifferentiation, production
of antitumor exosomes and at sub micromolar
concentrations it induces a lethal autophagy
while the DDA regio-isomer C17 was found inac-
tive on these effects (De Medina et al. 2009,
2013, 2021, 2023; Record et al. 2022; Serhan
et al. 2020; Mouchel et al. 2020; Bauriaud-Mallet
et al. 2019; Silvente-Poirot et al. 2016, 2018b;
Poirot and Silvente-Poirot 2016, 2018; Segala
et al. 2017; Dalenc et al. 2015; Silvente-Poirot
and Poirot 2014). While it was reported that the
receptor responsible for its tumor suppressive
effects is the LXR}, it is a ligand of both LXRa
and LXRp (Segala et al. 2017), so it is not yet
unknown what could be the biological effects of
DDA mediated by LXRa if any. DDA is not an
agonist of LXR but a biased agonist. As opposed
to canonical LXR ligands, it is a weak antagonist
on some LXR-dependent genes such as ABCA1
and an agonist on LDLR expression and on the
control of genes involved in cell differentiation,
some lipids biosynthesis enzymes, and the control
of lysosomes formation and autophagy processes
(De Medina et al. 2023; Record et al. 2022;

Serhan et al. 2020; Mouchel et al. 2020;
Bauriaud-Mallet et al. 2019; Silvente-Poirot
et al. 2018a, b; Poirot and Silvente-Poirot 2018;
Segala et al. 2017). DDA is also a very potent
inhibitor of the ChEH and of oncosterone forma-
tion highlighting the existence of a regulation
loop at the ChEH level (De Medina et al. 2021;
Poirot et al. 2018; Poirot and Silvente-Poirot
2018; Voisin et al. 2017; De Medina et al. 2013).

The C17 compound, which is the inactive
regio-isomer of DDA on the induction of cell
death and differentiation (Segala et al. 2017; De
Medina et al. 2009, 2013) was shown to be, on a
LXR-dependent luciferase cell system, a selective
LXRa agonist (Segala et al. 2017).

DDB was shown to be a potent inductor of the
redifferentiation of glioma and neuroblastoma
cell lines into cells with morphological and phe-
notypical features of glutaminergic neurons
(De Medina et al. 2009). A similar effect was
observed with DDA but DDA redifferentiation
effect was not restricted to these cell lines
(Fig. 8.7) (De Medina et al. 2009). DDA and
DDB induced the proliferation, sphere formation,
and differentiation on adult mice neural stem cell
and restore neural responsiveness after injury
suggesting that they can contribute to compensate
neuronal loss(Fransson et al. 2015; Khalifa et al.
2014).

Together these data showed that dendrogenin
A and B constitute a new class of bioactive
oxysterols. These conjugates are cationic
alkylamino-oxysterols.
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Fig. 8.7 Dendrogenins are bioactive metabolites of
5,60-EC. (a) DDA and DDB induce the differentiation of
glioma, neuroblastoma, and pluripotent progenitor cells
into glutaminergic neurons. (b—e) pluripotency of DDA
to differentiate cancer cells. (b) DDA induces the differen-
tiation of melanoma cells into melanocyte, (¢) of monocyte

8.7 Regulation of ChEH

Little is known on that topic. We noticed a work
from Faye et al. showing that AEBS (also known
as ABS at that time) from rat uterus increased
during estrus (Faye et al. 1980) suggesting that
female sex steroid hormones could regulate
ChEH activity. This is supported by more recent
data showing that the overexpression of ERa
increased  cholesterogenesis ~ through  the
upregulation of gene encoding cholesterogenesis
enzymes under the transcriptional control of
SREBP?2 in mice (Wang et al. 2006). In addition,
it is reported that both EBP (Misawa et al. 2003)
and DHCR7 (Prabhu et al. 2014) are under the
transcriptional control of SREBP2. Together
these data suggest that the ChEH activity can be
modulated by female sex steroid hormones. The
fact that DHCR?7 can be regulated by AMP kinase
and protein kinase A (Prabhu et al. 2017) suggests
that ChEH activity could be controlled by cell
surface signaling (Patel and Smith 2023;
London and Stratakis 2022) and nutrient sensing
(Gonzalez et al. 2020).

Thyroid carcinoma  Re-differentiated Thyroid cell

into dendritic cells, (d) of breast cancer cells into lacto-
genic cells, and (e) of thyroid carcinoma cells into func-
tional thyrocytes. NIS, sodium iodide symporter; TPO,
thyroperoxidase; Tg, thyroglobulin; TSH-R, thyroid
stimulating hormone receptor

8.8  Conclusion

We report on this chapter our current knowledge
on the ChEH enzyme and propose future research
directions. We show that ChEH constitutes a
metabolic checkpoint controlling the production
of bioactive metabolites such as dendrogenins,
CT, oncosterone and probably other yet unknown
metabolites. This illustrates the existence of a new
fascinating metabolic branch on the cholesterol
pathway. This new branch deserves further
investigations that will led to a better understand-
ing of fine processes involved on mammalian
development, physiology and that may give new
clues to improve our understanding of several
degenerative diseases and aging processes.
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