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Abstract

11 Cholesterol-5,6-epoxides (5,6-ECs) are

12 oxysterols (OS) that have been linked to sev-

13 eral pathologies including cancers and neuro-

14 degenerative diseases. 5,6-EC can be produced

15 from cholesterol by several mechanisms

16 including reactive oxygen species,

17lipoperoxidation, and cytochrome P450

18enzymes. 5,6-EC exists as two different

19diastereoisomers: 5,6α-EC and 5,6β-EC with

20different metabolic fates. They can be pro-

21duced as a mixture or as single products of

22epoxidation. The epoxide ring of 5,6α-EC

23and 5,6β-EC is very stable and 5,6-EC is

24prone to hydration by the cholesterol-5,6-

25epoxide hydrolase (ChEH) to give

26cholestane-3β,5α,6β-triol, which can be fur-

27ther oxidized into oncosterone. 5,6α-EC is

28prone to chemical and enzymatic conjugation

29reaction leading to bioactive compounds such

30as dendrogenins highlighting the existence of a

31new metabolic branch on the cholesterol path-

32way centered on 5,6α-EC. We will summarize

33in this chapter current knowledge on this path-

34way which is controlled by the ChEH.
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8.139 Introduction

40 The epoxide hydrolases (EHs) constitute a family

41 of enzymes present in all organisms, which trans-

42 form epoxide containing lipids by the addition of

43 water to give a trans-diol. An epoxide

44 (or oxirane) is a three-membered cyclic ether.

45 Five EHs have been described in vertebrates

46 which are: soluble EH (sEH), microsomal EH

47 (mEH), cholesterol EH (Cholesterol-5,6-epoxide

48 hydrolase or ChEH), hepoxilin hydrolase, and

49 leukotriene A4 (LTA4) hydrolase (Morisseau

50 2013; Newman et al. 2005). ChEH

51 (EC 3.3.2.11) represents a distinct subset among

52 EHs with respect to its substrate specificity, activ-

53 ity, and molecular identity. ChEH is very selec-

54 tive for the cholesterol-5,6-epoxide (5,6-EC)

55 diastereoisomers: cholesterol-5α,6α-epoxide

56 (5,6α-EC) and cholesterol-5β,6β-epoxide

57 (5,6β-EC) and catalyzes their stereoselective

58 hydration into cholestane-3β,5α,6β-triol

59 (CT) (Silvente-Poirot and Poirot 2012; Sevanian

60 and Mcleod 1986; Nashed et al. 1985) (Fig. 8.1).

61 ChEH has stimulated the interest of researchers

62 when 5,6-EC was suspected of being involved in

63 skin carcinogenesis (Chan and Black 1974; Lo

64 and Black 1973; Black and Lo 1971). Because of

65the presence of the epoxide group, it was sup-

66posed that 5,6-EC could react spontaneously with

67nucleophiles and behave like alkylating agents

68with direct carcinogenic properties. However,

69contradictory results were published concerning

70the potential carcinogenic and mutagenic effects

71of 5,6-ECs. This was reviewed in (Poirot and

72Silvente-Poirot 2013). In addition, the potential

73alkylating activity of 5,6-EC was recently ruled

74out by showing that 5,6-EC is stable and

75un-reactive toward nucleophiles under

76non-catalytic conditions (Paillasse et al. 2012).

77The present review is focused on ChEH and its

78relationship with cholesterol biosynthesis in con-

79nection with cancer and neurodegenerative

80diseases.

8.2 81The ChEH Enzyme

82ChEH was characterized at the molecular level as

83being a pharmacological target of tamoxifen, a

84drug widely used and approved by the FDA for

85the treatment and the prevention of breast cancers

86(BC) expressing the estrogen receptor alpha

87(ESR1). The ChEH is a hetero-oligomerous pro-

88teinaceous complex made mainly of two different

89enzymes involved on the post-lanosterol choles-

90terol biosynthesis: (1) the 3β-hydroxysteroid-

91Δ8,Δ7-isomerase also named as the emopamil-

92binding protein (EBP) or delta8-delta7-isomerase

93(D8D7I), which catalyzes the isomerization of

94zymostenol (5α-cholest-8-en-3β-ol) and

95zymosterol (5α-cholestadien-8,24-en-3β-ol) into

HO

HO

HO
HO

OH

O

O

5�,6�-epoxy-cholesterol

                (5,6�-EC)

5�,6�-epoxy-cholesterol

                (5,6�-EC)

ChEH

Cholestane-3,5,6-triol

                    (CT)

Fig. 8.1 The cholesterol-

5,6-epoxide hydrolase

(ChEH) catalyzes the trans

hydration of 5,6α- and

5,6β-epoxycholesterol to

give cholestane-

3β,5α,6β-triol

P. de Medina et al.



96 lathosterol (5α-cholest-7-en-3β-ol) and

97 24-dehydrolathosterol (5α-cholestadien-7,24-en-

98 3β-ol), respectively; (2) the 3β-hydroxysteroid-

99 Δ7-reductase (DHCR7) that converts

100 7-dehydrocholesterol and 7 (cholesta-5,7-dien-

101 3β-ol) and (cholesta-5,7,24-trien-3β-ol) into cho-

102 lesterol and desmosterol. EBP and DHCR7 were

103 found necessary and sufficient to reconstitute the

104 ChEH (De Medina et al. 2010; Kedjouar et al.

105 2004). EBP was shown to carry out the catalytic

106 activity of the ChEH, while DHCR7 was

107 the regulatory subunit of the CHE (Fig. 8.2).

108 The crystal structure of EBP was published in

109 the presence of Tamoxifen (PDB: 6OHU) (Long

110 et al. 2019). Tamoxifen was shown to be a com-

111 petitive inhibitor of ChEH (De Medina et al.

112 2010), and docking experiments of EBP showed

113 that 5,6-EC fits well within the tamoxifen binding

114 site of EBP (Fig. 8.3). Our team reported that the

115 ChEH was identical to the microsomal anti-

116 estrogen binding site (AEBS), a high affinity

117 microsomal binding site for tamoxifen and related

118 compounds (Leignadier et al. 2017; De Medina

119 et al. 2010; Kedjouar et al. 2004). ItAU3 was found

120 that all the tested AEBS ligands were inhibitors of

121 the ChEH and oxysterols known as substrates or

122 inhibitors of ChEH were found ligands of the

123 AEBS(De Medina et al. 2010; Sevanian and

124 Mcleod 1986). It was also found that their affinity

125 for the AEBS correlated positively with their

126 potency to inhibit the ChEH (De Medina et al.

127 2010). Other proteins such as the microsomal

128 epoxide hydrolase (mEH) and the 3-

129 β-hydroxysteroid-Δ24-reductase (DHCR24)

130 were found to affect ChEH activity and the

131 AEBS pharmacological profile when

132co-expressed with EBP and DHCR7 (M Poirot,

133unpublished results). ChEH is a promiscuous

134enzyme that binds drugs belonging to different

135pharmacological classes including selective estro-

136gen receptors modulators such as Tamoxifen,

137diphenylmethane compounds such as tesmilifene,

138phenothiazines, and amiodarone (Silvente-Poirot

139and Poirot 2012). It includes also natural

140compounds such as B-ring oxysterols (CT,

141OCDO, 7-hydroxy- and 7-ketocholesterol)

142(Silvente-Poirot and Poirot 2012), dendrogenin

143A (De Medina et al. 2013), and polyunsaturated

144fatty acids including oleic, arachidonic, and

145docosahexaenoic acids (De Medina et al. 2010).

146Recent inhibitors of EBP such as TASIN

147inhibitors developed for the treatment of colorec-

148tal cancers (Theodoropoulos et al. 2020; Wang

149et al. 2019; Zhang et al. 2018; Zhang et al. 2016)

150or for the remyelination of dendrocytes (Sax et al.

1512022; Caprariello and Adams 2022; Han and

152Zhou 2019; Hubler et al. 2018) have been

153reported. These compounds are likely to be

154ChEH inhibitors and their evaluation deserves

155further investigations.

8.3 1565,6-EC Formation and Stability

157The ChEH activity requires 5,6-EC for producing

158its hydration product CT. Conditions that were

159listed to be required for 5,6-EC production have

160been reviewed before (Poirot and Silvente-Poirot

1612013) (Fig. 8.4). These include some reactive

162oxygen species, lipoperoxidation, and cyto-

163chrome p450 for the stereoselective production

164of 5,6α-EC. The existence of a cytochrome p450

HO HO
HOO

5,6-EC

EBP DHCR7
catalytic regulatory

ChEH

OH

CT

Fig. 8.2 The ChEH is heterodimer of EBP and DHCR7. EBP is the catalytic subunit and DHCR7 is the regulatory

subunit
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165 involved in the stereoselective production of

166 5,6α-EC (Watabe and Sawahata 1979) supports

167 the existence of specific metabolic branch based

168 on 5,6α-EC transformation. InterestinglyAU5 , recent

169 studies from Zielinski et al showed that choles-

170 terol epoxidation with a peroxyde can give vari-

171 able ratios of both diastereoisomers depending on

172 the presence of a proton donor at proximity of the

173reaction (Zielinski and Pratt 2019). This suggests

174that even lipoperoxidation could give one or the

175other isomer as a main product according to the

176biochemical context in which the reaction takes

177place.

178It was postulated that 5,6-EC could be potent

179alkylating substances, like other chemicals bear-

180ing epoxide groups such as styrene oxides, but

Fig. 8.3 MolecularAU4

modeling of the putative

catalytic site of the ChEH

after docking of 5,6β-EC

into the EBP. (a)

Two-dimensional

topography of the

tamoxifen binding site on

EBP (obtained using

Discovery Studio v 2021).

(b) Two-dimensional

topography of the 5,6β-EC

binding site on EBP

highlighting that ASN193

could act as a proton donor

as catalyst of the

5,6-epoxide ring opening.

Intercations: very light

green: carbon Hydrogen

bond; light green: van der

Waals; dark green:

conventional Hydrogen

bond; orange: pi-sulfur;

dark pink: pi-pi T-shaped;

light pink: alkyl, pi-alkyl

P. de Medina et al.



181 5,6-EC has been shown not to be carcinogenic

182 when injected on rat nipples (El-Bayoumy et al.

183 1996). While 5,6-EC is known since a very long

184 time (Schroepfer 2000), it is only recently that

185 their reactivity toward nucleophilic substances

186 including nucleic acid bases was tested. 5,6-EC

187 was shown to be exceptionally stable and totally

188 un-reactive toward nucleophiles including gua-

189 nine, at ambient and physiological temperature,

190 as opposed to the carcinogen styrene-oxide

191 (Paillasse et al. 2012). Importantly, 5,6-EC was

192 stable for several days in the presence of

193 extremely high concentrations of nucleophiles,

194 ruling out that 5,6-EC is spontaneously reactive

195 and behave like direct carcinogenic or alkylating

196 agents. Thus, the unreactivity of 5,6-EC

197 diastereoisomers toward nucleophiles suggests

198 that the biological function of ChEH is not to

199 detoxify cells from 5,6-EC by metabolizing

200 them into a more soluble CT as it was first

201 suggested (Morin et al. 1991).

8.4202 ChEH Substrates

203 ChEH is very specific to the hydrolysis of 5,6-EC

204 into CT. It was shown to hydrolyze

205 5,6-epoxy-β-sitosterol, one of the major

206phytosterol (Aringer and Eneroth 1974).

2077-dehydrocholesterol-5,6β-epoxide was reported

208to be an irreversible inhibitor of ChEH (Nashed

209et al. 1986) (Fig. 8.5). Other steroidal epoxides

210were not reported to date to be substrates or

211inhibitors of ChEH. Fatty AU6acid and sulfate esters

212of cholesterol are not inhibitors of ChEH and thus

213not substrate of the enzyme showing that esterifi-

214cation provide against the hydration of choles-

215terol-5,6-epoxides by the ChEH (De Medina

216et al. 2010). Fatty acid and sulfate esters of

2175,6-EC are not inhibitors of ChEH (Fig. 8.5)

218(De Medina et al. 2010). Epoxides AU7of PUFA that

219were reported to be inhibitors of ChEH

220(De Medina et al. 2010) have not yet being tested

221as substrates and inhibitors of ChEH.

8.5 222Subcellular Localization, Tissue
223Distribution and Regulation
224of ChEH

225EBP AU8and DHCR7 co-localized in the endoplasmic

226reticulum of cells (Koczok et al. 2019) were cho-

227lesterol biosynthesis takes place (Dietschy and

228Turley 2004). These enzymes are expressed in

229most mammalian tissues (liver, kidney, lung,

230testes, spleen, brain, intestinal epithelium, and

HO

HO HO

Cholesterol

Cytochrome P450?

O

5,6�-EC 5,6�-EC

autoxidation

lipoperoxidation
Cytochrome P450

O

Fig. 8.4 5,6-EC formation and biosynthesis. 5,6-EC can be produced from cholesterol by different nonenzymatic and

enzymatic mechanisms
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231 skin), with the liver being the richest source (see

232 Human Protein Atlas, https://www.proteinatlas.

233 org/). EBPAU9 and DHCR7 together with DHCR24

234 have been shown to colocalize on in the nuclear

235 envelope (Koczok et al. 2019). Consistently,

236 ChEH is mainly present in the microsomes (sub-

237 cellular fractions that contain the reticulum endo-

238 plasmic) of various tissues including the liver.

239 ChEH is also found in tumor cells of different

240 tissue origins ((Silvente-Poirot and Poirot 2012)

241 and (M. Poirot and S. Silvente-Poirot, personal

242 communication)). Since EBP and DHCR7 have

243 been reported to be upregulated in several cancers

244 (Kuzu et al. 2016), it is still to be defined what

245 would be the impact of various EBP/DHCR7

246 ratio on ChEH activity.

8.6247 Biological Functions
248 of the ChEH

249 ChEH enzymatic function is to produce CT and to

250 control 5,6-EC levels. So we must consider the

251 metabolism and the biological properties of CT,

252 5,6α-EC and 5,6β-EC and their metabolites.

8.6.1 253Biological Properties of CT
254and Its Metabolites

255CT was reported to be one of the most potent

256cytotoxic oxysterol (Schroepfer 2000), with little

257effect on cholesterol biosynthesis downregulation

258(Morin and Peng 1989). It was reported to inhibit

259the osteoblastic differentiation and to induce apo-

260ptosis suggesting it is a common factor underly-

261ing the pathogenesis of atherosclerosis and

262osteoporosis (Liu et al. 2005). CT AU10was shown to

263inhibit prostate cancer cell proliferation migration

264and invasion via a modulation of LXR (Lin et al.

2652013). CT AU11has been shown to be a

266neuroprotective endogenous compound that

267protects against neuronal injury by direct binding

268and by inducing a negative modulation on

269NMDA receptors (Hu et al. 2014). CT suppresses

270neuronal hyperexcitability through a direct inter-

271action with the voltage-gated sodium channel

272(Tang et al. 2018). CT was shown to induce

273vascular smooth cells calcification, which may

274be a mechanism through which CT favors the

275formation of the atherosclerotic plaque (Liu

276et al. 2004, 2007).

A

B

HO HO HO

5,6-EC 5,6-epoxy-�-sitosterol

O OO

O
O

O

OO
O

O

S
O

7-dehydrocholesterol-5,6�-epoxide

5,6�-epoxy-cholesterol-3�-sulfate

                     (5,6-ECS)

3�-fatty acid ester of 5,6-epoxy-cholesterol

–

Fig. 8.5 Chemical structure of (a) ChEH substrates and (b) nonsubstrates

P. de Medina et al.
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277 On the other side, CT has been shown to be a

278 precursor of secondary metabolites involved in

279 the control of carcinogenic programs. CT is

280 genotoxic through reactive oxygen species pro-

281 duction (Cheng et al. 2005) and can be

282 metabolized into oncosterone by the 11-

283 β-hydroxysteroid dehydrogenase of type

284 2. OncosteroneAU12 was shown to be a tumor pro-

285 moter in breast cancer and is a ligand of GR and

286 LXR (Voisin et al. 2017). Oncosterone is a biased

287 agonist on GR that drives cellular proliferative

288 programs (De Medina et al. 2021; Silvente-Poirot

289 et al. 2018a; Poirot et al. 2018; Voisin et al.

290 2017).

291 CT is probably also prone to sulfation by the

292 sulfotransferase SULT2B1b, since B-ring

293 oxysterols are substrates of the enzyme but this

294 deserves further evaluation (Fuda et al. 2007) and

295 should give cholestane-5α,6β-diol-3β-O-sulfate

296 (CDS) which could serve as a modulator of

297 LXR (Song et al. 2001). However, assessment

298 of the biological properties of CDS is difficult

299 because it can be hydrolyzed by the steroid sulfa-

300 tase (STS) which is widely expressed in human

301 t i s sues (h t t p s : / /www.pro te ina t l a s .o rg /

302 ENSG00000101846-STS/tissue) to give back

303 CT from CDS. So recently de Medina et al.

304 have developed a non-hydrolyzable analog of

305 CDS to test if CDS could be a biologically active

306 metabolite (de Medina et al., Manuscript submit-

307 ted for publication). CT is also known as a bio-

308 marker of several pathologies (Zanjani et al.

309 2023; Unluturk et al. 2023; Cooper et al. 2020;

310 Vonica et al. 2019; Reddy et al. 1977) and

311 inherited diseases such as Niemann–Pick C1 dis-

312 ease (Porter et al. 2010).

8.6.2313 Biological Properties of 5,6b-EC
314 and Its Metabolites

315 5,6β-EC has not been shown to be a ligand of

316 LXRs and it was reported to display LXR modu-

317 latory activities which are cell specific (Segala

318 et al. 2013; Berrodin et al. 2010). 5,6β-EC is a

319 good substrate for ChEH and a better substrate on

320 whole cell assays (Voisin et al. 2017; De Medina

321 et al. 2010) showing that it may have a major

322contribution as a preferred substrate of ChEH

323for the production of CT and its metabolites

324such as oncosterone. 5,6β-EC does not activate

325the acyl-coA:cholesterol acyl transferase

3261 (ACAT1/SOAT1) and is a weak substrate of

327ACAT1 (Zhang et al. 2003). It is a substrate of the

328human plasma lecithin-cholesterol

329acyltransferase (LCAT) (Szedlacsek et al. 1995).

3305,6β-EC was shown to be a weak substrate of

331SULT2B1b (Fuda et al. 2007). High

332concentrations in 5,6β-EC was shown to induce

333cell death through the impairment of the mito-

334chondrial activity (Segala et al. 2013; Vejux

335et al. 2007; Lordan et al. 2007; O’Callaghan

336et al. 2001).

8.6.3 337Biological Properties of 5,6a-EC
338and Its Metabolites

3395,6α-EC has been shown to be a ligand and

340modulator of LXRs with cell-specific activities

341(Segala et al. 2013, Berrodin et al. 2010).

3425,6α-EC is one of the best substrates of the

343sulfotransferase SULT2B1b (Fuda et al. 2007)

344to give 5,6α-epoxy-cholesterol-3β-sulfate

345(5,6-ECS). 5,6 AU13-ECS was shown to act as the

346mediator of the breast cancers cells

347redifferentiation properties of AEBS ligands

348(Segala et al. 2013) and to be a LXR modulator

349(Segala et al. 2013; Song et al. 2001). 5,6α-EC is

350a potent activator and substrate of the acyl-coA:

351cholesterol acyl transferase 1 (ACAT1/SOAT1)

352expressed on the endoplasmic reticulum of cells

353to produce 5,6α-EC- and cholesteryl-fatty acid

354esters (Zhang et al. 2003) while it was reported

355that plasmatic lecithin-cholesterol-acyl-transfer-

356ase (LCAT) contributes little for fatty acid esteri-

357fication of 5,6α-EC (Yamamuro et al. 2020).

358Cholesteryl esters display tumor promoter

359properties (Websdale et al. 2022; Khallouki

360et al. 2018; Paillasse et al. 2009) but the eventual

361tumor promoter properties of 5,6α-EC-fatty acid

362esters have yet not been investigated and deserve

363further investigations. More interestingly,

3645,6α-EC is the precursor of dendrogenin A

365(DDA), dendrogenin B (DDB), C17 compound

366that were all found as metabolites present in
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367 mammalian tissues (Fig. 8.6) (Soules et al. 2019;

368 De Medina et al. 2013). DDA and C17 are two

369 regioisomers that result from the conjugation of

370 5,6α-EC with histamine by its primary amine and

371 by its imidazole ring, respectively, and DDB is a

372 5,6α-EC conjugate with a primary amine of

373 spermidine (Soules et al. 2019; Noguer et al.

374 2017; De Medina et al. 2009) (Fig. 8.6). DDA is

375 a bioactive conjugated oxysterol that has been

376 proved to be a tumor suppressor metabolite that

377 induces cancer cell redifferentiation, production

378 of antitumor exosomes and at sub micromolar

379 concentrations it induces a lethal autophagy

380 while the DDA regio-isomer C17 was found inac-

381 tive on these effects (De Medina et al. 2009,

382 2013, 2021, 2023; Record et al. 2022; Serhan

383 et al. 2020; Mouchel et al. 2020; Bauriaud-Mallet

384 et al. 2019; Silvente-Poirot et al. 2016, 2018b;

385 Poirot and Silvente-Poirot 2016, 2018; Segala

386 et al. 2017; Dalenc et al. 2015; Silvente-Poirot

387 and Poirot 2014). While it was reported that the

388 receptor responsible for its tumor suppressive

389 effects is the LXRβ, it is a ligand of both LXRα

390 and LXRβ (Segala et al. 2017), so it is not yet

391 unknown what could be the biological effects of

392 DDA mediated by LXRα if any. DDA is not an

393 agonist of LXR but a biased agonist. AsAU14 opposed
AU15

394 to canonical LXR ligands, it is a weak antagonist

395 on some LXR-dependent genes such as ABCA1

396 and an agonist on LDLR expression and on the

397 control of genes involved in cell differentiation,

398 some lipids biosynthesis enzymes, and the control

399 of lysosomes formation and autophagy processes

400 (De Medina et al. 2023; Record et al. 2022;

401Serhan et al. 2020; Mouchel et al. 2020;

402Bauriaud-Mallet et al. 2019; Silvente-Poirot

403et al. 2018a, b; Poirot and Silvente-Poirot 2018;

404Segala et al. 2017). DDA is also a very potent

405inhibitor of the ChEH and of oncosterone forma-

406tion highlighting the existence of a regulation

407loop at the ChEH level (De Medina et al. 2021;

408Poirot et al. 2018; Poirot and Silvente-Poirot

4092018; Voisin et al. 2017; De Medina et al. 2013).

410The C17 compound, which is the inactive

411regio-isomer of DDA on the induction of cell

412death and differentiation (Segala et al. 2017; De

413Medina et al. 2009, 2013) was shown to be, on a

414LXR-dependent luciferase cell system, a selective

415LXRα agonist (Segala et al. 2017).

416DDB was shown to be a potent inductor of the

417redifferentiation of glioma and neuroblastoma

418cell lines into cells with morphological and phe-

419notypical features of glutaminergic neurons

420(De Medina et al. 2009). A similar effect was

421observed with DDA but DDA redifferentiation

422effect was not restricted to these cell lines

423(Fig. 8.7) (De Medina et al. 2009). DDA AU16and

424DDB induced the proliferation, sphere formation,

425and differentiation on adult mice neural stem cell

426and restore neural responsiveness after injury

427suggesting that they can contribute to compensate

428neuronal loss(Fransson et al. 2015; Khalifa et al.

4292014).

430Together these data showed that dendrogenin

431A and B constitute a new class of bioactive

432oxysterols. These conjugates are cationic

433alkylamino-oxysterols.
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8.7434 Regulation of ChEH

435 Little is known on that topic. We noticed a work

436 from Faye et al. showing that AEBS (also known

437 as ABS at that time) from rat uterus increased

438 during estrus (Faye et al. 1980) suggesting that

439 female sex steroid hormones could regulate

440 ChEH activity. This is supported by more recent

441 data showing that the overexpression of ERα

442 increased cholesterogenesis through the

443 upregulation of gene encoding cholesterogenesis

444 enzymes under the transcriptional control of

445 SREBP2 in mice (Wang et al. 2006). In addition,

446 it is reported that both EBP (Misawa et al. 2003)

447 and DHCR7 (Prabhu et al. 2014) are under the

448 transcriptional control of SREBP2. Together

449 these data suggest that the ChEH activity can be

450 modulated by female sex steroid hormones. The

451 fact that DHCR7 can be regulated by AMP kinase

452 and protein kinase A (Prabhu et al. 2017) suggests

453 that ChEH activity could be controlled by cell

454 surface signaling (Patel and Smith 2023;

455 London and Stratakis 2022) and nutrient sensing

456 (Gonzalez et al. 2020).

8.8 457Conclusion

458We report on this chapter our current knowledge

459on the ChEH enzyme and propose future research

460directions. We show that ChEH constitutes a

461metabolic checkpoint controlling the production

462of bioactive metabolites such as dendrogenins,

463CT, oncosterone and probably other yet unknown

464metabolites. This illustrates the existence of a new

465fascinating metabolic branch on the cholesterol

466pathway. This new branch deserves further

467investigations that will led to a better understand-

468ing of fine processes involved on mammalian

469development, physiology and that may give new

470clues to improve our understanding of several

471degenerative diseases and aging processes.
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