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Abstract——Prostaglandins are derived from arach-
idonic acid metabolism through cyclooxygenase activ-
ities. Among prostaglandins (PGs), prostacyclin (PGI2)
and PGE2 are strongly involved in the regulation of
homeostasis and main physiologic functions. In addi-
tion, the synthesis of these two prostaglandins is
significantly increased during inflammation. PGI2 and
PGE2 exert their biologic actions by binding to their
respective receptors, namely prostacyclin receptor (IP)
and prostaglandin E2 receptor (EP) 1–4, which belong
to the family of G-protein–coupled receptors. IP and
EP1–4 receptors are widely distributed in the body and
thus play various physiologic and pathophysiologic
roles. In this review, we discuss the recent advances
in studies using pharmacological approaches, genetically
modified animals, and genome-wide association studies

regarding the roles of IP and EP1–4 receptors in the
immune, cardiovascular, nervous, gastrointestinal,
respiratory, genitourinary, and musculoskeletal
systems. In particular, we highlight similarities and
differences between human and rodents in terms of the
specific roles of IP and EP1–4 receptors and their
downstream signaling pathways, functions, and
activities for each biologic system. We also highlight
the potential novel therapeutic benefit of targeting IP
and EP1–4 receptors in several diseases based on the
scientific advances, animalmodels, and human studies.

Significance Statement——In this review, we present
an update of the pathophysiologic role of the prostacy-
clin receptor, prostaglandin E2 receptor (EP) 1, EP2,
EP3, andEP4 receptorswhen activated by the twomain
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prostaglandins, namely prostacyclin and prostaglan-
din E2, produced during inflammatory conditions in
human and rodents. In addition, this comparison of the

published results in each tissue and/or pathology
should facilitate the choice of the most appropriate
model for the future studies.

I. Introduction

In comparison with other prostanoids, prostaglandin
(PG) E2 and prostacyclin (PGI2) are dramatically in-
creased during inflammatory processes and pathologic
conditions in different organs. Both mediators are
synthesized from the same precursors. The process
starts by the action of the enzyme cytosolic phospholi-
pase A2 on plasma membrane phospholipids, which
results in the production of arachidonic acid (AA). AA
is then transformed by cyclooxygenase (COX)-1 and
COX-2 into the unstable metabolite PGH2. Synthesis
of the final PG product depends on the catalytic
activity of the enzyme acting on PGH2. PGE2 is synthe-
sized via the isomerization of PGH2 by PGE2 synthases,
whereas PGI2 is produced by another isomerase, namely
PGI2 synthase (PGIS) (Wu and Liou, 2005; Norberg
et al., 2013). It is important to note that the rate-
limiting step in this pathway is the conversion of AA to
PGH2 by COX-1/2 (Cathcart et al., 2010).
COX-1 is constitutively expressed in most tissues and

is responsible for the production of the majority of
prostanoids that are involved in the homeostasis of
normal physiologic processes, such as, for instance,
gastric wall protection (Yang and Chen, 2016). COX-2,
however, is both constitutively expressed in various
human tissues (e.g., kidney and brain) and can be
induced in numerous cells (including macrophages,
vascular smooth muscle, endothelial cells) during in-
flammation and cancer (Patrono, 2016). Three different
isoforms of PGES exist: cytosolic PGES and two micro-
somal isoforms, microsomal PGES (mPGES)-1 and
mPGES-2. Both cytosolic PGES and mPGES-2 are
constitutively expressed, whereas mPGES-1 is induced
by inflammatory mediators along with COX-2 (Ricciotti
and FitzGerald, 2011). Gene deletion of mPGES-1 will
lead to a sustained reduction in cellular PGE2, showing
the importance of this isoform in regulating PGE2

synthesis, but will also lead to a shift toward the
biosynthesis of PGI2 (Ricciotti and FitzGerald, 2011).
PGIS is constitutively expressed in several tissues,
although it can also be induced during inflammation
(Wu and Liou, 2005). The increase in expression of
COX-2, mPGES-1, and PGIS, which is induced by in-
flammatory stimuli, leads to a corresponding increase in
PGE2 and PGI2 levels.
PGE2 and PGI2 exert their biologic actions by binding

to their respective receptors, namely E-Prostanoid
[prostaglandin E2 receptor (EP)] and I-Prostanoid
[prostacyclin receptor (IP)] receptors. Four subtypes
of EP receptors (EP1–EP4) have been identified so far,
although several splice variants of the EP3 receptor
exist (for the characteristics of receptors see Tables 1

and 2). Prostanoid receptors are G-protein–coupled
receptors with seven transmembrane domains, an
extracellular N terminus, and an intracellular car-
boxyl terminus (Alexander et al., 2019). The seven
transmembrane domains are connected by three in-
tracellular and three extracellular loops (Narumiya
et al., 1999; Sun and Li, 2018). The sequence homol-
ogy between human and mouse IP, EP1, EP2, and EP4

receptors ranges from 79% to 88% (Narumiya et al.,
1999; Mohan et al., 2012). These species differences in
receptor sequences may have biologic and physiologic
consequences (Narumiya et al., 1999). Compared with
the synthetic pathways of prostanoids, it remains to
be clarified which PG receptors are involved in each
PG-elicited physiologic and pathophysiologic action,
and this has mainly been due to lack of subtype-
specific agonists and antagonists. In this review, by
focusing on four subtypes of PGE2 receptors and PGI2
receptor, we summarize recent progress on molecular
characterization of EP and IP receptors in various
pathophysiologic processes.

A. Updated Aspects of General Characteristics of
Prostaglandin E2 Receptors 1–4 and
Prostacyclin Receptors

1. Prostaglandin E2 Receptor 1. EP1 receptor was
first cloned in 1993 byWatabe et al. (1993) (see Table 2).
In rats, a splice variant of EP1 receptor was identified
by Okuda-Ashitaka et al. (1996). The human and rat
EP1 receptors share a sequence homology of 83%,whereas
rat EP1 receptor is 96% homologous with mouse EP1
receptor (Funk et al., 1993; Watabe et al., 1993; Okuda-
Ashitaka et al., 1996).

a. Prostaglandin E2 receptor 1 signaling. An in-
crease in the concentration of intracellular Ca2+ is one of
the main signaling events initiated upon EP1-receptor
activation. Coupling of EP1 receptor to Gq with the
subsequent activation of phospholipase C (PLC) and
inositol triphosphate (IP3) synthesis has been consid-
ered as a possible mechanism for this Ca2+ mobilization
(Table 1). Evidence showing that EP1 receptors couple
to Gq was provided by the involvement of PLC in EP1-
dependent human extravillous trophoblast migration,
nuclear factor k light chain enhancer of activated B cells
(NF-kB) activation in human endothelial kidney (HEK)
cells, and increased bone formation in the rat osteoblast
(Nicola et al., 2005; Tang et al., 2005; Neuschäfer-Rube
et al., 2013). In addition, Ji et al. (2010) reported
a dose-dependent increase of IP3 synthesis in HEK
cells expressing human EP1 receptor in response to
PGE2. Similarly, in the oocyte expression system,
mouse EP1 receptors can stimulate Ca2+ mobilization
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through coupling to Gq (Tabata et al., 2002), and in
glomerular mesangial cells of diabetic rats the EP1
signaling pathway is also associated with Gq activation
(Ni et al., 2016).
The dependence of Gq coupling for EP1-receptor cell

signaling has, however, been challenged by other studies

(Woodward et al., 2011; Lebender et al., 2018). For
instance, Watabe et al. (1993) showed that in CHO cells
expressing the mouse EP1 receptor, the increase in
intracellular Ca2+ was completely dependent on extra-
cellular Ca2+ and was associated with limited IP3

formation. Two years later, the same group showed in

TABLE 2
Characteristics of EP1–4 and IP receptor subtypes in humans, rats, and mice

Human Rat Mouse References

EP1 Receptor
Gene symbol PTGER1 Ptger1 Ptger1 Funk et al., 1993; Watabe et al., 1993; Båtshake et al., 1995;

Ishikawa et al., 1996; Okuda-Ashitaka et al., 1996; Boie et al.,
1997

Gene ID 5731 25637 19216
Chromosomal location 19p13.12 19q11 8 C2
Number of exons 3 3 3
Number of amino acids 402 405

Variant
366

405

EP2 receptor
Gene symbol PTGER2 Ptger2 Ptger2 Regan et al., 1994b; Katsuyama et al., 1995; Boie et al., 1997;

Nemoto et al., 1997; Smock et al., 1999Gene ID 5732 81752 19217
Chromosomal location 14q22.1 15p14 14 C1
Number of exons 2 3 3
Number of amino acids 358 357 362

EP3 receptora

Gene symbol PTGER3 Ptger3 Ptger3 Sugimoto et al., 1992, 1993; Irie et al., 1993; Takeuchi et al.,
1993, 1994; Neuschäfer-Rube et al., 1994; Regan et al., 1994a;
Kotani et al., 1995; Schmid et al., 1995; Boie et al., 1997;
Kotani et al., 1997; Oldfield et al., 2001; Bilson et al., 2004

Gene ID 5733 24929 19218
Chromosomal location 1p31.1 2q45 3 H4
Number of exons 10 4 4
Protein derived from splicing variants

(UniProtKB accession number) and
number of amino acids

EP3-I
(P43115-1)

390

EP3a 365 EP3a
365

EP3-II
(P43115-2)

388

EP3b 361 EP3b
361

EP3-III
(P43115-3)

365

EP3g 364 EP3g
364

EP3-IV
(P43115-4)

374

EP3d 343

EP3-e
(P43115-5)

418b

EP4 receptor
Gene symbol PTGER4 Ptger4 Ptger4 (An et al., 1993; Honda et al., 1993; Bastien et al., 1994; Sando

et al., 1994)c; Arakawa et al., 1996; Boie et al., 1997Gene ID 5734 84023 19219
Chromosomal location 5p13.1 2q16 15 A1
Number of exons 7 3 3
Number of amino acids 488 488 513

IP receptor
Gene symbol PTGIR Ptgir Ptgir Boie et al., 1994; Nakagawa et al., 1994; Namba et al., 1994;

Sasaki et al., 1994Gene ID 5739 292661 19222
Chromosomal location 19q13.32 1q21 7 A2
Number of exons 6 2 2
Number of amino acids 386 416 415

aTen transcripts produced by alternative splicing in human have been detected for the EP3 receptor. Here are presented the five human EP3 protein isoforms mostly found.
bCorrect value for EP3e amino-acid number, which has been described with mistake starting after Leu 373 in Schmid et al. (1995), Kotani et al. (1997), Lebender et al. (2018).
cThese publications present data for EP4 receptors under wrong nomenclature of EP2 receptors.

TABLE 1
Signal-transduction mechanisms of EP1–4 and IP receptor subtypes

References for this table could be found in I. Introduction section and in Breyer et al. (2019)

Receptor Primary G-Protein Classic Second Messenger Other G-Protein

EP1 Gq Intracellular Ca2+ Gi, G12/13
EP2 Gs cAMP
EP3 Gi cAMP Gq, Gs, G12
EP4 Gs cAMP Gi
IP Gs cAMP Gi, Gq
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the same expression system that the activation of EP1
receptor resulted in intracellular Ca2+ concentration
increase through two mechanisms involving both extra-
cellular and intracellular Ca2+ influx (Katoh et al.,
1995).
In addition, other G-proteins have been associated

with EP1 receptor. Gi-mediated signaling was involved
in the upregulation of hypoxia-inducible factor 1a that
occurred upon the stimulation of humanEP1 receptor in
HEK cells (Ji et al., 2010). Furthermore, the down-
stream signaling of Gi involved the stimulation of
phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of rapamycin pathway. In
another study, the same group found that human EP1
receptor upregulated the expression of nuclear receptor
related-1 (Nurr1) in HEK cells by activating protein
kinase (PK) A, cAMP response element-binding protein
(CREB), and NF-kB in a cAMP-independent manner (Ji
et al., 2012). However, Rho signaling appears to be
involved in the upregulation of Nurr1, which implies
a possible coupling of the EP1 receptor to G12/13 (Ji et al.,
2012).
Rat kidney highly expresses mRNAs and proteins of

the EP1 and EP1-variant receptor, which possesses
a transmembrane segment VII–like structure lacking
an intracellular COOH-terminal tail. Overexpression of
this EP1-variant in a CHO cell line inhibited EP1-
mediated Ca2+ mobilization and EP4-mediated cAMP
formation, suggesting that the rat EP1-receptor variant
may be capable of inhibiting the signaling of other
subtypes of EP receptors (Okuda-Ashitaka et al., 1996;
Lebender et al., 2018).
2. Prostaglandin E2 Receptors 2 and 4. EP2 and

EP4 receptors share the same stimulatory G-protein
(Gs)–signaling pathway (Table 1), therefore we will
discuss both in the same section. In fact, the EP4
receptor was detected by pharmacological studies in
1994 (Coleman et al., 1994), but before that it was
believed that only three EP receptors existed. In some
publications, the EP4 receptor was mistakenly desig-
nated EP2 receptor (see Table 2) until a fourth receptor,
the genuine EP2 receptor, was cloned (Regan et al.,
1994b), see Table 2. Despite the similarities in the
functional coupling (discussed later) between EP2 and
EP4 receptors, they share only ;38% of the amino-acid
sequence identity in the transmembrane domain. The
human EP2 receptor consists of 358 amino acids,
whereas the EP4 consists of 488 amino acids. The
longer intracellular carboxyl terminus of the EP4 re-
ceptor (148 vs. 40) accounts for most of this difference,
including the pattern of desensitization and internali-
zation of the receptor in response to agonists (Desai
et al., 2000). Additionally, the third intracellular loop of
the EP4 receptor contains a stretch of 25 amino acids,
which is not present in the EP2 receptor (Regan, 2003).
Since these regions are important in coupling to
G-proteins, it seems expected that there are differences

in properties and/or the signal-transduction pathway
between the two receptors.

b. Prostaglandin E2 receptor 2 and prostaglandin E2

receptor 4 signaling. Classically EP2 and EP4 recep-
tors, which have broadly similar affinities (Ki of 1–5 nM)
for the endogenous ligands PGE2 and PGE1 (Kiriyama
et al., 1997; Abramovitz et al., 2000), have been shown
to couple to Gs (Woodward et al., 2011). Stimulation of
both receptors activates adenylate cyclase (AC), leading
to an increase in cAMP and subsequent activation of
cAMP-dependent protein kinase (PKA) and the tran-
scription factor CREB (Honda et al., 1993; Regan et al.,
1994b; Fujino et al., 2005). However, the signaling
properties of these two receptors show some differences.
The first indication was provided by Fujino et al. (2002),
who found that the EP2 receptor could activate T-cell
factor signalingmainly through a cAMP/PKA-dependent
mechanism in contrast to the EP4 receptor, which was
found to signal through a PI3K-dependent pathway.

Moreover, the amount of cAMP produced due to the
activation of each receptor is different. In the same
study described above, Fujino et al. (2002) reported that
at the same level of receptor expression, HEK cells
stably expressing human EP4 receptor produced only
20%–50% of the amount of cAMP produced by the cells
expressing human EP2 receptors. Furthermore, the
same group reported that, in addition to coupling to
Gs, human EP4 receptor can couple to Gi to activate
PI3K signaling (Fujino and Regan, 2006). Another
difference between EP2 and EP4 receptors is the rapid
agonist-induced desensitization and internalization
that occur with the EP4 receptor but not with the EP2
receptor (Nishigaki et al., 1996; Desai et al., 2000).
Together the coupling to Gi and the short-term de-
sensitization of EP4 receptors can, in part, justify the
lesser amount of cAMP produced upon the stimulation
of EP4 compared with EP2 and hence might seem to
limit the efficiency of the functional coupling of EP4
receptor to cAMP/PKA compared with EP2 receptor.
Furthermore, a positive feedback loop between PGE2

synthesis and EP2-receptor expression was detected in
human fibroblasts and colon cancer cells (Sagana et al.,
2009; Hsu et al., 2017).

In addition to the classic cAMP/PKA pathway, cAMP
can also result in the activation of PKA-independent
pathways, such as, for instance, the exchange proteins
directly activated by cAMP (Epac1 and 2). There is
accumulating evidence that EP2 and EP4 receptors
signal through the Epac pathway. In human lung
fibroblasts, Epac mediated the antiproliferative effects
of the EP2 receptor (Haag et al., 2008), whereas in
mouse neuronal cultures, EP2-receptor stimulation
protected against hemin-induced neurotoxicity through
activation of the Epac pathway (Mohan et al., 2015). In
rat microglia, EP2-receptor activation (via Epac-signaling
pathways) induced the proinflammatorymediators, COX-
2, inducible nitric oxide synthase (iNOS), interleukin
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(IL)-1b, and IL-6 while decreasing the induction of
proinflammatory tumor necrosis factor (TNF) a and
the chemotactic factors [chemokine ligand (CCL)]
CCL3 and CCL4 (Quan et al., 2013). EP4 receptor
induced cystic-fibrosis transmembrane-regulator an-
ion secretion by a mechanism involving cAMP/Epac
signaling through PLC-induced Ca2+ mobilization in hu-
man bronchial epithelial cells (Ivonnet et al., 2015). In
other situations, PGE2 regulates the function of Jurkat
T cells (immortalized human T lymphocyte cell line)
through the EP4-PKA/Epac pathway, increasing the ex-
pression of the immunoglobulin, T-cell immunoglobulin
mucin-3 (Yun et al., 2019). PGE2 compromised bone
formation by activatingEP2/4-cAMP-Epac–signaling path-
way via Akt phosphorylation in human bone-marrow cells
(Mirsaidi et al., 2017). In mouse bone marrow–derived
macrophages, PGE2 increased IL-1b due to activation of
EP2/EP4 and stimulation of PKA and/or Epac in response
to infection (Martínez-Colón et al., 2018).
Several studies now show that PI3K/extracellular

receptor kinase (ERK) pathway is important for signal-
ing by EP2 and EP4 receptors but not always in the
same cell type. Fujino et al. (2003) showed that in HEK-
293 cells stably transfected with the human EP2 and
EP4 receptors, EP4 but not EP2 receptors induced ERK
activation by a PI3K-dependent pathway. Subsequent
studies further confirmed the link between EP4 recep-
tors and ERK activation in human (Takahashi et al.,
2015; Li et al., 2017c), rat (Mendez and LaPointe, 2005;
Frias et al., 2007), and mice (Pozzi et al., 2004; Nandi
et al., 2017; Ying et al., 2018) cells (cardiomyocytes,
cancer cells, etc.). This PI3K-pathway signaling associ-
ated with Ca2+ influx after EP4-receptor activation has
been described to promote cell migration in human oral-
cancer cell lines (Osawa et al., 2020). Opposing the
findings by Fujino et al. (2003), EP2-receptor activation
can also activate PI3K signaling, leading to the differ-
entiation of type 1 helper T (Th1) cells (Yao et al., 2009).
EP2 receptors were also shown to activate PI3K in
human colorectal cancer (Hsu et al., 2017), mouse
dendritic (Yen et al., 2011), and rat brain glioma cells
(Park et al., 2009). In mouse dendritic cells, this
activation was cAMP-dependent and led to ERK phos-
phorylation (Yen et al., 2011).
EP2 and EP4 receptors have been shown to exert

some actions by associating with b-arrestin (Hirata and
Narumiya, 2011). Complexing of G-protein–coupled
receptors with b-arrestin leads to receptor internaliza-
tion and desensitization (Wendell et al., 2020). These
events were originally considered to be a means of
terminating receptor signaling until evidence (for b2-
adrenergic receptors) was provided that b-arrestin
mediates intracellular G-protein–independent signaling
pathways (Luttrell et al., 1999). Likewise, in mouse brain
microglia, PGE2 inhibited the production of IL-10 through
EP2/b-arrestin pathway independent of G-protein
signaling (Chu et al., 2015). In human colorectal

cancer cells and mouse keratinocytes, activation of
either the EP4 or EP2 receptor leads to transactivation
of epidermal growth factor receptor through b-arrestin/
Src pathway (Buchanan et al., 2006; Chun et al., 2010).
Furthermore, in a mouse model of portal hypertensive
gastropathy, PGE2 reduced mucosal apoptosis through
the EP4/b-arrestin/Src/epidermal growth factor recep-
tor/Akt cascade (Tan et al., 2017).

3. Prostaglandin E2 Receptor 3. Among EP recep-
tors, the EP3 receptor was the first to be cloned (Sugimoto
et al., 1992, see Table 2), although this receptor is known
to express various isoforms (Sugimoto et al., 1993). In
humans, 10 different mRNA splice variants have been
detected (Regan et al., 1994a; Kotani et al., 1995, 1997;
Schmid et al., 1995;Kotelevets et al., 2007). At first, it was
believed that these variants resulted in eight different
EP3-receptor isoforms (Kotelevets et al., 2007), but
subsequently three of these mRNA variants were
recognized as noncoding (NR_028294.2, NR_028292.2,
NR_028293.2). Therefore, it became clearer that only
five receptor isoforms exist, which were named EP3-I,
EP3-II, EP3-III, EP3-IV, and EP3-e. EP3-I isoform has
three splice variants that are different in the 39-
untranslated region. These variants are designated
EP3-Ia, EP3-Ib, and EP3-Ic (Regan et al., 1994a;
Kotelevets et al., 2007). In all EP3 isoforms, the first
359 amino acids across the seven transmembrane
helices are identical. However, the number of amino
acids in the carboxy terminal of each isoform varies
between 6 and 59 (Kotani et al., 1995; Bilson et al.,
2004). Consequently, each isoform can initiate distinct
signaling pathways, which points to the importance of
the carboxyl-terminal region (Irie et al., 1994; Schmid
et al., 1995; Jin et al., 1997; Woodward et al., 2011). In
addition, this variation in the C-terminal domain leads
to differences in agonist-induced internalization (Bilson
et al., 2004). In rats, four splice variants were cloned
(Takeuchi et al., 1993, 1994; Neuschäfer-Rube et al.,
1994; Oldfield et al., 2001), whereas in mice, three
isoforms exist, which are EP3a, EP3b, and EP3g
(Sugimoto et al., 1992, 1993; Irie et al., 1993). Similar
to humans, the isoforms in rats and mice arise because
of differences in the carboxyl-terminal tails (Takeuchi
et al., 1994; Negishi et al., 1996; Oldfield et al., 2001).
The mouse EP3a isoform is a homolog of human EP3A
(International Union of Basic and Clinical Pharmacol-
ogy Committee on Receptor nomenclature: EP3-I) re-
ceptor (Regan et al., 1994a). Notably, sometimes the
same isoform has been assigned different terms by
different investigators (Woodward et al., 2011; Lebender
et al., 2018); however, International Union of Basic and
Clinical Pharmacology Committee on Receptor nomen-
clature should be followed.

c. Prostaglandin E2 receptor 3 signaling. The ma-
jor signal-transduction pathway for EP3 receptor is
considered to be inhibition of AC via Gi coupling
(Sugimoto and Narumiya, 2007). However, other signal-
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transduction pathways have been attributed to EP3
receptors. Some human EP3 isoforms have been associ-
ated with increasing intracellular Ca2+, generating IP3,
and/or coupling to Gs proteins (An et al., 1994; Kotani
et al., 1995; Schmid et al., 1995). Concerning mouse EP3-
receptor isoforms, Yokoyama et al. (2012) demonstrated
that EP3b can induce AC superactivation through
coupling to Gq/PLC/Ca

2+ pathway in COS-7 cells but
not in HEK cells. Furthermore, mouse EP3g expressed
in CHO cells was shown to couple to both Gi and Gs

(Negishi et al., 1996). Mouse EP3a, EP3b, and EP3g
were found to couple to Rho activation via a pertussis
toxin–insensitive G-protein (Hasegawa et al., 1997),
possibly G12 (Hasegawa et al., 1997; Macias-Perez
et al., 2008; Lu et al., 2015).
In a clear demonstration of differences in signaling

between EP3 isoforms, Israel and Regan (2009) showed
that, although human EP3-II and EP3-III isoforms can
induce ERK activation in HEK cells, EP3-Ia could not.
Furthermore, the underlying mechanisms of ERK phos-
phorylation were different. EP3-III induced a cascade
involving Gi/PI3K/PKC/Src, whereas EP3-II–signaling
pathway did not involve PI3K and PKC. The significance
of these differences is reflected in the variation of the
downstream gene expression stimulated by these
isoforms.
4. Prostacyclin Receptor. The IP receptor is acti-

vated by the endogenous ligand PGI2 and was cloned in
1994 (Boie et al., 1994; Nakagawa et al., 1994), see
Table 2. The human IP and rat IP receptors share
a sequence homology of 79%, whereas the rat IP recep-
tor is 94% homologous with the mouse IP receptor.
d. Prostacyclin receptor signaling. The IP receptor

has also been recognized to classically couple to the Gs

protein (Table 1). Therefore, its activation results in
cAMP production and the subsequent activation of PKA
(Hirata and Narumiya, 2011). In addition, some studies
showed the ability of IP receptor to couple to Gq and/or
Gi as well (Woodward et al., 2011). The activation of
mouse IP receptor expressed in CHO cells resulted in
the production of both cAMP and IP3, suggesting
coupling to Gs and Gq, respectively (Namba et al.,
1994). In human erythroleukemia cell line and mouse
adipocytes, IP-receptor stimulation produced a cAMP-
independent increase in intracellular Ca2+, implying
that this increase occurs simultaneously with Gs cou-
pling (Vassaux et al., 1992; Schwaner et al., 1995).
Lawler et al. (2001) reported that mouse IP receptor
expressed in HEK cells and mouse erythroleukemia
cells could couple to Gi and Gq and increase IP3 and
intracellular Ca2+ in addition to Gs. However, the Gi-
and Gq-mediated effects required the presence of cAMP
and activated PKA as a prerequisite. Interestingly, in
other cell types, mouse IP-receptor activation was not
associated with Gi-dependent responses (Chow et al.,
2003). Taken together, the difference between these
findings suggests that the ability of mouse IP to couple

to Gi depends on cell type involved (Hirata and
Narumiya, 2011; Woodward et al., 2011). Similarly,
human IP receptor expressed in CHO, HEK, and SK-N-
SH did not show any evidence of Gi coupling (Chow
et al., 2003).

In addition to classic signaling through G-proteins,
the IP receptor has been shown to activate a family of
transcription factors called peroxisome proliferator–
activated receptors (PPARs), which can regulate cell
function through nongenomic and genomic pathways
(Clapp and Gurung, 2015). According to Falcetti et al.
(2007), human IP expressed in HEK cells produced
antiproliferative effects by activating PPAR-g indepen-
dently of cAMP. On the other hand, IP-receptor activa-
tion of potassium channels in human pulmonary artery
smooth muscle occurred through PPAR-b/d but in
a PKA-dependent manner (Li et al., 2012). Further-
more, activation of IP induced migration of human
breast-cancer cells and was reported to stimulate the
PI3K/P38 pathway independently of PKA (Allison et al.,
2015).

B. Single-Nucleotide Polymorphisms and
Dimerization of Prostaglandin E2 Receptors 1–4 and
Prostacyclin Receptors

Other characteristics and information about these
receptors (EP1–4, IP), such as subtypes, isoforms,
single-nucleotide polymorphism (SNP), and dimeriza-
tion, have yet to be fully elucidated. A putative second
IP-receptor subtype was suggested by Wilson and
colleagues (2011) in human-airway epithelial cells,
although molecular evidence for the IP2 subtype is
currently lacking. Furthermore, some SNPs have been
described for EP and IP receptors (Cornejo-García et al.,
2016). PTGER SNPs are associated with different
pathologies: EP2 in essential hypertension (Sato et al.,
2007), EP3 in Stevens-Johnson syndrome/toxic epider-
mal necrolysis (Ueta et al., 2015;Mieno et al., 2020), and
in asthma (Park et al., 2007) as well as EP4 in African
Americans with inflammatory bowel disease (Brant
et al., 2017), in gastric cancer (Heinrichs et al., 2018),
and in multiple sclerosis (Matesanz et al., 2012).
Similarly, a single mutation in PTGIR reduces cAMP
production (Stitham et al., 2007) and is associated with
platelet activation and cerebral infarction (Shimizu
et al., 2013). The prostanoid receptors, including IP
and EP receptors, are known to have the ability to form
homodimers or heterodimers (Midgett et al., 2011;
Matsubara et al., 2017). Relatively few studies have
been devoted to this issue, making comparisons be-
tween humans and rodents concerning homodimers and
heterodimers difficult (Giguère et al., 2004; McGraw
et al., 2006; Osborne et al., 2009; Ibrahim et al., 2013).
The human IP receptor was the first to be described to
form heterodimers, most interestingly with its physio-
logic opponent, the TP receptor, leading to unexpected
TP-mediated cAMP formation, binding of isoprostanes
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to the heterodimer, and TP-receptor internalization
induced by PGI2 (Wilson et al., 2004, 2007). By itself,
human IP forms homo-oligomers via disulfide bonds,
which might be essential for receptor trafficking to the
cell surface (Giguère et al., 2004). Coexpression of EP1
and b-adrenergic receptors results in formation of
heterodimers, which may contribute to b-agonist re-
sistance in asthma (McGraw et al., 2006). The mouse
EP2 receptor has been found to form heterodimers with
the calcitonin receptor, thereby reducing its ability to
induce Ca2+ flux (Matsubara et al., 2017).

C. Crystal Structures of Human Prostaglandin E2

Receptor 3 and Prostaglandin E2 Receptor 4

Recently, Kobayashi and his colleagues reported the
structural basis for prostanoid receptor ligand binding
by crystallization of the human EP4 receptor with its
antagonist ONO-AE3-208 and an inhibitory anti-EP4
antibody (Toyoda et al., 2019) and also crystallization of
the human EP3 receptor–PGE2 complex (Morimoto
et al., 2019). Two more papers regarding structures of
EP3 (Audet et al., 2019) and TP (Fan et al., 2019b)
receptors were published back-to-back. These papers
provide us with several important insights in develop-
ing prostanoid receptor–targeted drugs. Firstly, the
ligand-binding pocket, which is open toward the extra-
cellular direction in b-adrenergic receptor, is covered by
the b-hairpin structure of the second extracellular loop
region (interestingly, the sequences within these
regions are highly conserved among prostanoid recep-
tors). In addition, the ligand-binding pocket is open
toward the phospholipid membrane, and the pore
entrance consists of the first and seventh helix regions
(Toyoda et al., 2019). This suggests that the ligand for
prostanoid receptor could enter the pocket by way of the
plasma membrane and not via direct access from
extracellular space like for the b-adrenergic ligand
(Hollenstein, 2019). Secondly, an EP4 antagonist,
ONO-AE3-208, was shown to directly bind to the
entrance region of the ligand-binding pore by interact-
ing with several amino acids within the seventh helix
region of EP4 receptor, including R3167.36, which had
previously been predicted as a potential binding site for
carboxylic acid of prostanoid ligand (Toyoda et al.,
2019). Thirdly, the natural ligand, PGE2 more deeply
enters the ligand-binding pocket of the EP3 receptor
(Morimoto et al., 2019); v- and a-chain moieties of the
PGE2 interact with several amino acids within sixth
and seventh helices and those within second and
seventh helices as well as second extracellular region,
respectively. Moreover, polar functional groups in the
cyclopentane ring are recognized by amino acids within
first and second helices, which was previously suggested
by a series of studies to identify the receptor domains
important for ligand recognition by using chimeric and
point-mutated prostanoid receptors (Kobayashi et al.,
1997, 2000). Such structural information regarding

interactions between specific amino-acid residues of
the PG receptor and the particular structure of their
ligands strongly promotes our understanding regard-
ing how lipid-natured PG molecules access into spe-
cific PG receptors in plasma membranes and will
facilitate the development of more specific compounds
for PG-related diseases. Knowledge from the crystal
structure data will also aid in our understanding of the
potential functional consequence of polymorphisms in
prostanoid receptors, particularly for the EP3 recep-
tor, which has been linked with certain diseases
(Jeffcoat et al., 2014; Ueta, 2018).

D. Allosteric Modulators and Biased Ligands

Although classic EP- and IP-receptor agonists and
antagonists have an orthostatic mode of binding (i.e.,
sharing the binding site with the natural ligand) alloste-
ric modulators—both positive and negative—have been
identified for the EP2 receptor (Jiang et al., 2010, 2018,
2020). Likewise, a positive modulator for the IP receptor
(Yamamoto et al., 2017) and a negativemodulator of EP4
(Leduc et al., 2013) have been reported. It is anticipated
that such compoundsmight bemore potent and selective,
metabolically stable, and/or less costly than traditional
prostaglandin receptor ligands.

Another option to hone the pharmacodynamic profiles
of ligands is to introduce biased signaling properties,
also referred to as functional selectivity. For instance, in
cells overexpressing human EP4 receptors, PGE2 po-
tently activates Gs proteins, whereas PGF2a and PGE1

alcohol are biased toward activating Gi and b-arrestin,
respectively (Leduc et al., 2009). Along the same lines,
PGE1 and PGE3 were found to be biased EP4 ligands
showing lower efficacy than PGE2 to stimulate T-cell
factor/b-catenin–mediated activity, which is consistent
with their antineoplastic properties, whereas they
maintain full activity with regard to cAMP formation
(Araki et al., 2017). A synthetic biased EP2 agonist
showed 1000-fold increase in its potency stimulating
cAMP formation but more than 50-fold reduced potency
in b-arrestin recruitment as compared with PGE2

(Ogawa et al., 2016).

II. Immune System

A. Effects of Prostaglandin E2 Receptors 1–4 and
Prostacyclin Receptor on Human and Mouse
Immune Cells

1. T Lymphocytes. For a long time, PGE2 through
EP2 and EP4 activation and downstream cAMP-PKA
signaling was believed to suppress both mouse and
human T-cell activation and primary cytokine produc-
tion [e.g., IL-2 and interferon (IFN)-g] in response to
antigens or mitogens (Brudvik and Tasken, 2012).
However, this concept has been challenged recently
with evidence that these receptors may actually act
as an immune activator (Yao and Narumiya, 2019). In
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this respect, activation of EP2 and/or EP4 receptor by
PGE2 or their selective agonists facilitated mouse
Th1 cell differentiation, and this was prevented by
their respective antagonists (Yao et al., 2009, 2013).
Interestingly, these effects involve both cAMP-PKA–
and PI3K-Akt–signaling pathways (Yao et al., 2009,
2013). Findings linking PGE2 and EP2/4 receptors to
human autoimmune inflammatory diseases have been
revealed by genetic association studies, which positively
link enhanced PGE2 signaling to IL-23/ type 17 helper
T cell (Th17) signature genes and disease severity (Yao
and Narumiya, 2019).
In other studies, an EP1-receptor agonist, ONO-DI-

004, increased Th1 cell differentiation in wild-type
mouse T cells but had little effect on differentiation of
EP1-deficient Th1 cells (Nagamachi et al., 2007). On the
one hand, PGE2 and EP2/EP4-receptor agonists inhibit
human Th1 cells by reducing the expression of the
transcription factor T-box expressed in T cells and the
production of the cytokine IFN-g (Boniface et al., 2009;
Napolitani et al., 2009). On the other hand, PGE2 favors
the production of type 2 cytokines IL-4 and IL-5 from
human T cells but does not affect mouse type 2 helper
T cell (Th2) cytokine production in vitro (Hilkens et al.,
1995). Moreover, PGE2 and EP2/EP4-receptor agonists
significantly promote IL-17 and IL-22 production from
both mouse and human Th17 cells because of induction
of IL-23 and IL-1b receptors, an effect counteracted by
their respective antagonists (Hilkens et al., 1995;
Chizzolini et al., 2008; Boniface et al., 2009; Napolitani
et al., 2009; Yao et al., 2009; Chen et al., 2010; Lee et al.,
2019).
Although Th1, Th2, and Th17 cells modulate various

proinflammatory and antimicrobial responses, regula-
tory T cells (Treg) usually act in an anti-inflammatory
manner. It was previously reported that PGE2 promotes
both mouse and human Treg cell differentiation, espe-
cially in the tumor microenvironment (Baratelli et al.,
2005; Sharma et al., 2005). In contrast, it was recently
found that PGE2 can also inhibit both mouse and
human Treg development in vitro, which is mimicked
by EP2- and EP4-receptor agonists andmediated by the
cAMP-PKA pathway (Hooper et al., 2017; Li et al.,
2017b; Maseda et al., 2018).
Similar to PGE2, PGI2 can also activate the cAMP

pathway and regulate T-cell function, but depending on
the context of disease model being investigated, it can
have proimmunomodulatory or anti-immunomodulatory
effects, including on T cells (Dorris and Peebles, 2012). In
one of the early studies, IP-receptor agonists were
reported to inhibit Th1 cell differentiation in vitro via
a cAMP-dependent suppression of NF-kb (Zhou et al.,
2007a). In subsequent experiments by the same group,
antigen- or IL-33–dependent Th2 cell function and
allergic lung inflammation could be elicited by prostacy-
clin analogs both in vitro and in vivo, (Zhou et al., 2007b,
2018a). A critical role of the IP receptor in response to

a fungal challenge in mouse lungs was also confirmed in
PTGIR null mice, in which increased IL-5 and IL-13
responsiveness of CD4+ T cells to Alternaria sensitiza-
tion, typically a response requiring IL-33, was observed
(Zhou et al., 2018a). The situation appears to differ for
other types of antigen reactions, in which activation of IP
receptor by the agonist iloprost enhances Th1 differen-
tiation (suppresses Th2 differentiation) in vivo and
promotes Th1 cell–mediated inflammatory responses in
a mouse model of contact hypersensitivity. This is also
consistent with PTGIR null mice displaying much less
contact hypersensitivity (Nakajima et al., 2010). More-
over, the IP-receptor agonists iloprost and cicaprost
facilitated mouse Th17 cell differentiation and function
and increased IL-17 and IL-22 production from human
Th17 cells (Truchetet et al., 2012; Zhou et al., 2012).
Collectively, the new findings indicate that PGE2 and
PGI2 can use the cAMP pathway to promote inflamma-
tory effector T-cell (e.g., Th1, Th17, and Th22) responses
in vivo, although they primarily downregulate T cell–
receptor activation. Thus, the role of Gs-coupled prosta-
noid receptors on T-cell function, although compelling,
is complex and remains somewhat conflicting. Immuno-
modulation appears to be dependent on the animal
species, the type of inflammatory disease studied, and,
to an extent, whether data has been collected in vitro or
in vivo.

2. Innate Lymphoid Cells. Innate lymphoid cells
(ILCs) are a group of cells that secrete large amounts of
prototypic T-cell cytokines, such as IFN-g, IL-17, and
IL-4, in response to appropriate stimuli, but, unlike
T cells, they do not express T-cell receptors (Vivier et al.,
2018). ILCs exert their functions by producing different
cytokines (e.g., ILC1 cells produce IFN-g, and ILC2 cells
secrete IL-4, IL-5, and IL-13, whereas ILC3 cells mainly
produce IL-17 and IL-22). In mice, PGE2 and an EP4-
receptor agonist, L-902,688, increased the production of
IL-22 from ILC3 cells in vitro. Inhibition of PGE2

production using a nonselective COX inhibitor indo-
methacin or blockade of EP4 signaling using either
a selective EP4-receptor antagonist L-161,982 or de-
letion of EP4 receptor on T cells and ILCs reduced IL-22
production in vivo (Duffin et al., 2016). PGE2 also
promotes IL-22 production from human ILC3 (Duffin
et al., 2016). In contrast to experiments in ILC3 cells, an
EP4-receptor agonist, PGE2-alcohol, mimicked PGE2

inhibition of ILC2 cytokine production in mice, whereas
the EP2-receptor agonist, butaprost, did not reduce
ILC2 cytokine production significantly in the same
setting (Zhou et al., 2018b). Similarly, although the
EP4-receptor agonist L-902,688 mimicked PGE2 sup-
pression of cytokine production from human ILC2, an
EP2-receptor agonist, butaprost, had little effect (Maric
et al., 2018).

3. Dendritic Cells. Dendritic cells (DCs) are impor-
tant cells for regulating innate immunity and for present-
ing antigens to T cells, with PGE2 playing a critical role in
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the maturation of DCs (Kalinski, 2012; Jia et al., 2019).
PGE2 is required for the migration of DCs, allowing their
homing to draining lymph nodes, and this is mimicked by
EP4-receptor agonist inmouse DCs and by both EP2- and
EP4-receptor agonists in human monocyte-derived DCs
(Kabashima et al., 2003; Legler et al., 2006). Engagement
of EP2 and EP4 receptors by their agonists promotes the
production of the proinflammatory cytokine IL-23, which
is critical for development andmaturation of Th17 cells by
both mouse and human DCs. These effects were found to
be mediated through activation of the cAMP-PKA path-
way and transcription factorsCREB,NF-kB, andC/AATT
enhancer-binding proteinb (Kocieda et al., 2012;Shi et al.,
2015; Ma et al., 2016). Moreover, EP2- and EP3-receptor
agonists induced the generation of human tolerogenic
DCs characterized by the induction of high levels of the
immunosuppressant, IL-10, whereas an EP4-receptor
agonist favored the development of inflammatory DC by
promoting the production of IL-23 and Th17 polarization
(Flórez-Grau et al., 2017). In other studies, the EP3-
receptor agonist ONO-AE-248 was observed to inhibit the
chemotaxis and costimulatory molecule expressions of
mouse DCs in vitro and restricted DC cell function to fine-
tune excessive skin inflammation in vivo (Shiraishi et al.,
2013). A number of studies have reported a suppressive
effect of the IP receptor in DCs. The IP-receptor agonists
cicaprost, iloprost, and treprostinil inhibited the produc-
tion of proinflammatory chemokines and cytokines from
humanmonocyte-induced DCs stimulated by lipopolysac-
charides (LPSs) or TNF-a (Hung et al., 2009; Yeh et al.,
2011; Wang et al., 2017a). Furthermore, iloprost also
suppressed mouse-airway DC function to inhibit Th2
differentiation and thereby reduced allergic lung inflam-
mation in a mouse model of asthma (Idzko et al., 2007).
4. Macrophages. In human macrophages, PGE2-

EP2/EP4-cAMP signaling inhibits inflammatory cyto-
kine production (e.g., TNF-a, IL-1b) and phagocytosis,
promoting an M2-phenotype associated with an in-
crease in IL-10 production. For example, the EP4-
receptor agonist L-902,688 was found to inhibit human
lung macrophage production of TNF-a, whereas the
EP2 agonist butaprost was 400� less potent, suggesting
a major role for the EP4 over the EP2 receptor in this
study (Gill et al., 2016). In other studies, EP4 receptors
may play a role in the resolution phase of inflammation
(Sokolowska et al., 2015). It was found that PGE2 and
the EP4 agonist CAY10598 inhibited the activation of
nucleotide-binding oligomerization domain-like recep-
tors family pyrin domain-containing 3 inflammasome
and IL-1b production in human primary monocyte-
derived macrophages, whereas EP4-receptor antagonist
GW627368X (Wilson et al., 2006) or EP4 knockdown
reversed the PGE2-mediated nucleotide-binding oligo-
merization domain-like receptors family pyrin domain-
containing 3 inhibition (Sokolowska et al., 2015). Binding
of advanced glycation end-products on humanmonocytes/
macrophages activated T cells and reduced allograft

survival, a process that was inhibited by PGE2, the
EP2-receptor agonist ONO-AE1-259, and the EP4-
receptor agonist ONO-AE1-329. The inhibitory effects
of PGE2 were prevented by either by AH6809 (EP1/2
and DP1 antagonist) or AH23848 (EP4/TP antagonist)
(Takahashi et al., 2010). In other situations, however,
PGE2, butaprost, and the EP4 agonist CAY10598 could
inhibit 1,25-dihydroxy vitamin D3–induced production
of human cationic antimicrobial protein-18 from hu-
man macrophages during Mycobacterium tuberculosis
infection (Wan et al., 2018). Given that responses could
partially be reversed by AH6809 (EP1/2 and DP1
antagonist) or L-161,982 (EP4 antagonist) but not L-
798106 (EP3 antagonist) suggests a dual role for EP2
and EP4 receptors in restraining the innate immune
response and prolonging microbial survival. Likewise,
the killing of Klebsiella pneumoniae by rat alveolar
macrophages was prevented by PGE2 and treprostinil,
with both agents acting in part through EP2 receptors
(Aronoff et al., 2007).

As already documented with EP2/4 receptor agonists,
PGI2 analogs (iloprost, beraprost, treprostinil, and
ONO-1301) are also able to suppress LPS-induced
proinflammatory monocyte chemoattractant protein-1
(MCP-1) production from humanmonocytes and macro-
phages (Tsai et al., 2015). More recently, Aoki and
colleagues recently reported that inactivation of the
PGE2-EP2- NF-kB–signaling pathway in mouse macro-
phages reduced macrophage infiltration and proinflam-
matory cytokine (e.g., MCP-1) production, leading to the
prevention of intracranial aneurysms. They found that
administration of EP2-receptor antagonist PF-04418948
(af Forselles et al., 2011) in rats reduced macrophage
infiltration and intracranial aneurysm formation and
progression (Aoki et al., 2017a,b). The IP-receptor ago-
nist cicaprost stimulated vascular endothelial growth
factor secretion but inhibited MCP-1 production from
TNF-a–treated human monocyte-derived macrophages,
whereas administration of an IP-receptor antagonist,
RO3244794 (Bley et al., 2006), significantly reduced
neovascularized lesion area in mouse choroidal neo-
vascularization model (Woodward et al., 2019). In the
same experimental setting, such effects could be mim-
icked by PGE2 acting in part on EP4 receptors (as
determined by the EP4 antagonist, GW627368). Taken
together, this suggests that both IP and EP4 receptors
may play a role macrophage-driven neovascularization.

5. Neutrophils. To kill invading microbes, neutro-
phils release their nuclear contents in an NADPH
oxidase and reactive oxygen species –dependent man-
ner, with neutrophil extracellular traps (NETs) playing
a critical role in killing bacteria, fungi, or viruses by
physically trapping them. PGE2 plays a key role in this
process and has been shown to inhibit human neutrophil
function (such as superoxide production, migration, and
antimicrobial peptide release), an effect that was pre-
vented by AH6809 (EP1/2 and DP1 antagonist) but not
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by the EP4 receptor–selective antagonist ONO-AE2-227
(Turcotte et al., 2017). Other studies have confirmed that
PGE2 inhibits human NET formation through EP2 and
EP4 receptors in vitro and via the EP2 receptor in vivo, in
which the EP2 agonist butaprost suppressed NET forma-
tion in mice (Shishikura et al., 2016). Both mouse and
human neutrophils overexpress COX-2 and PGE2 post–
bone marrow transplantation (Ballinger et al., 2006) and
exhibit defective bacterial killing due to reduced NET
formation (Domingo-Gonzalez et al., 2016). Reduced NET
formation after bone-marrow transplantation inmice and
humans could be restored by COX inhibitors or an EP2-
receptor antagonist (PF-04418948) plus an EP4-receptor
antagonist (ONO-AE3-208) (Domingo-Gonzalez et al.,
2016). Activation of EP4 receptor prevented endotoxin-
induced mouse neutrophil infiltration into airways
(Konya et al., 2015). Similarly, EP4 receptor mediates
PGE2-induced enhancement of human pulmonary micro-
vascular barrier function against neutrophil infiltration
(Konya et al., 2013). Taken together, these relatively
recent studies provide good evidence that PGE2, through
activation of both EP2 and EP4 receptors, suppresses the
immune response of neutrophils. Thus, manipulation of
these receptors therapeutically may prove useful in block-
ing pathologic NETosis in autoimmune diseases and/or
aid the host response to infection.
6. Eosinophils and Mast Cells. Human and mouse

eosinophils express EP2 and EP4 receptors, which
mediate the effects of PGE2 by blocking eosinophil
responses, such as degranulation, chemotaxis, and pro-
duction of reactive oxygen species (Mita et al., 2002;
Sturm et al., 2008; Luschnig-Schratl et al., 2011). The
underlying signaling pathways appear to involve PI3K,
phosphoinositide-dependent kinase 1, and PKC but not
the cAMP/PKA pathway (Luschnig-Schratl et al., 2011;
Sturm et al., 2015). PGE2 via the EP4 receptor inhibited
the interaction of eosinophils with human pulmonary
endothelial cells in vitro, including adhesion and trans-
migration (Konya et al., 2011). In other experimental
settings, the EP2 receptor appears to inhibit the
mobilization of eosinophils from guinea-pig bone mar-
row and allergen-induced eosinophil recruitment to
mouse lung (Sturm et al., 2008) and is involved in IgE-
dependent human-airway constriction in vitro by inhib-
iting mast-cell activation (Safholm et al., 2015).
In human mast-cell lines and primary cord blood-

derivedmast cells, EP2-, EP3-, and EP4-receptor proteins
are expressed (Feng et al., 2006; Torres-Atencio et al.,
2014). PGE2 counteracted the hyperosmolar-induced de-
granulation of thesemast cells via EP2 andEP4 receptors
(Torres-Atencio et al., 2014). Human lung mast cells
likewise express both EP2 and EP4-receptor mRNA, but
it is the EP2 receptor that predominantly mediates the
inhibitory effect of PGE2 on histamine release in vitro
(Kay et al., 2013). In contrast, EP3-receptor activation
causes migration, adhesion, antigen-dependent degranu-
lation, and IL-6 release ofmousemast cells (Nguyen et al.,

2002; Weller et al., 2007; Sakanaka et al., 2008) and
potentiates histamine release in human peripheral blood-
derived mast cells (Wang and Lau, 2006).

Similar to PGE2, PGI2 attenuates the locomotion of
human peripheral blood eosinophils and guinea-pig bone-
marrow eosinophils via IP-receptor activation (Konya
et al., 2010; Sturm et al., 2011). Unlike EP2/EP4 signaling
in eosinophils, the inhibitory-effect PGI2 is mediated by
intracellular cAMP. Accordingly, endothelium-derived
PGI2 controls eosinophil-endothelial interaction and pro-
motes the barrier function of lung endothelial cells to limit
eosinophil adhesion and transendothelial migration
(Konya et al., 2010). Thus, these data explain previous
findings that deletion of the IP receptor in mice aug-
mented allergen-induced eosinophilia in the lung and skin
and enhanced airway remodeling (Takahashi et al., 2002;
Nagao et al., 2003).

7. Hematopoietic Stem/Progenitor Cell and Leukemia.
PGE2 treatment of hematopoietic stem cell (HSC)/
hematopoietic progenitor cell (HPC) from mice and
humans promotes survival, proliferation, and engraft-
ment in vitro (Hoggatt et al., 2009) These effects are
recapitulated by the EP2-receptor agonist ONO-AE1-259
or the EP4-receptor agonist ONO-AE1-329, which in-
creased mouse and human HSC/HPC colony formation
and long-term bone-marrow reconstitution capacity of
Lineage2Sca-1+c-Kit+ cells (Ikushima et al., 2013; Wang
et al., 2017b). Moreover, treatment of bone-marrow mes-
enchymal progenitor cells with PGE2 or the EP4-receptor
agonist significantly increased their ability to support
HSPC colony formation (Ikushima et al., 2013). Con-
versely, treatment with COX inhibitors increased HPCs
in peripheral blood of both mice and humans. Similarly,
administration of selective EP4-receptor antagonists L-
161,982 or AH23848 expanded bone-marrow HPCs and
enhanced HPC mobilization in mice induced by GM-CSF,
whereas administration of selective EP4-receptor agonist
(L-902,688), rather than EP1-, EP2-, or EP3-receptor
agonists, reducedHPCmobilization (Hoggatt et al., 2013).

PGE1 treatment impaired the persistence and activity
of leukemic stem cells in a preclinical mouse chronic
myelogenous leukemia (CML) model and a xenograft
model of transplanted CML patient CD34+ HSCs/HPCs,
and a nonselective EP2/EP3/EP4 agonist, misoprostol,
conferred similar protection against CML, suggesting
potential therapeutic strategy of CML by using PGE1 or
misoprostol (Li et al., 2017a). Along the same lines, the
breakpoint cluster region-Abelson inhibitors imatinib and
nilotinib were recently described to enhance PGE2 bio-
synthesis in monocytes of healthy volunteers and CML
patients, an effect that might contribute to their clinical
efficacy in the treatment of CML (Bärnthaler et al., 2019).

B. Roles of Prostaglandin E2 in Human Autoimmune
Diseases and Relevant Mouse Models

Given the critical effects of PGE2 on immune cell
activation and function, this lipid mediator has been
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reported to be linked to the development and pathogen-
esis of various inflammatory diseases in various animal
models. Simultaneously, genome-wide associated stud-
ies have suggested a role for the PGE2 pathway in
immune-related human diseases, including multiple
sclerosis (MS), rheumatoid arthritis (RA), inflammatory
bowel disease (IBD), asthma, and inflammatory skin
disease among others.
1. Multiple Sclerosis. Numerous genome-wide asso-

ciated studies suggest that polymorphisms in the
5p13.1 regulatory region near PTGER4 (encoding hu-
man EP4) are significantly associated with PTGER4
gene expression and the susceptibility to MS (De Jager
et al., 2009; Matesanz et al., 2012). The level of PGE2

was increased in cerebrospinal fluid of MS patients
(Bolton et al., 1984). Compared with healthy individu-
als, Th17 cells from MS patients have higher levels of
EP2 receptor, resulting in increased expression of
proinflammatory cytokines like IFN-g and GM-CSF
and pathogenicity of Th17 cells (Kofler et al., 2014).
Administration of EP2-receptor agonist did not affect
proinflammatory cytokine production from Th17 cells of
healthy individuals but increased IFN-g and cerebro-
spinal fluid (CSF) 2 production from Th17 cells isolated
from MS patients (Kofler et al., 2014). Studies using an
animal model of MS [experimental autoimmune enceph-
alomyelitis (EAE)] demonstrated that EP4-receptor gene
deletion or pharmacological blockade of EP4 receptor
during the immunization stage prevented EAE develop-
ment in mice and downregulated Th1/Th17 cells (Yao
et al., 2009; Esaki et al., 2010). Administration of anEP4-
receptor agonist after peak disease response still reduces
the peak EAE severity. These results thus suggest
distinct roles of the EP4 receptor at different stages of
EAE disease.
2. Rheumatoid Arthritis. In the animal model of

carrageenan-induced paw inflammation, neutralization
of PGE2 by a monoclonal antibody prevented the de-
velopment of tissue edema and hyperalgesia in affected
paws, an effect associated with reduced IL-6 production
(Portanova et al., 1996). Blockade of PGE2-EP2/EP4
signaling using receptor antagonists similarly sup-
pressed joint inflammation in the mouse model of
allergen-induced arthritis, which again was related
to a reduction in IL-6 (McCoy et al., 2002; Honda
et al., 2006). IL-6 is the key cytokine that mediates
Th17 cell development, and PGE2 facilitates Th17
immune responses. Misoprostol, a PGE2 analog binding
to EP2, EP3, and EP4 receptors, exacerbated collagen-
induced arthritis in mice through activating the in-
flammatory IL-23/IL-17 axis, whereas an EP4-receptor
antagonist reduced arthritis in a mouse model (Sheibanie
et al., 2007a; Chen et al., 2010). This supports previous
observations in genetically modifed mice, in which
deletion of inducible mPGES-1 and EP4, but not EP3
or EP2, reduced arthritic incidence and severity
in simlar experimental models (McCoy et al., 2002;

Trebino et al., 2003). The therapeutic perspectives associ-
ated with EP4-receptor blockade will be developed in
Section X. D. Arthritis.

3. Inflammatory Bowel Disease and Colon Cancer.
COX-2 activity in the colonic epithelial cells of IBD
patients (Singer et al., 1998) and PGE2 levels in the
lesions of IBD patients are elevated (Schmidt et al.,
1996). Similarly, gene polymorphisms in PTGER4 loci
are associated with increased PTGER4 gene expression
and susceptibility to Crohn disease, suggesting a critical
role of EP4 receptors (Libioulle et al., 2007; Glas et al.,
2012). PGE2 is known to act in different ways in the
gastrointestinal tract. For example, PGE2 plays funda-
mental roles in maintaining the gastrointestinal epithe-
lial barrier, and therefore, blockade of PGE2 synthesis or
the EP4 receptor was found to promote acute gastroin-
testinal injury in mice (Kabashima et al., 2002; Duffin
et al., 2016) and induce gut damage in humans.However,
misoprostol, an EP2/EP3/EP4 agonist, aggravated in-
testinal inflammation induced by 2,4,6-trinitrobenzene
sulfonic acid in mice through promoting the inflamma-
tory IL-23/IL-17 pathway (Sheibanie et al., 2007b). In
contrast, genetic deletion of the PGE2 synthase mPGES-1
or theEP4 receptor in T cells ameliorated T cell–mediated
chronic intestinal inflammation in mice, which was
associated with reduction of the development of in-
flammatory Th1 and Th17 cells in the intestine (Maseda
et al., 2018). Therefore, PGE2 may also facilitate T cell–
mediated chronic intestinal inflammation in both mice
and humans.

PGE2 has long been known to be associated with the
development and progression of colorectal cancer
(CRC), and use of COX inhibitors has been suggested
to prevent CRC (Chan et al., 2005). Genome-wide
association studies have indicated that polymorphisms
in the NAD+-dependent 15-hydroxyprostaglandin de-
hydrogenase (15-PGDH), an enzyme that breaks down
PGE2 into biologically inactive 15-keto-PGE2, are asso-
ciated with higher risk for CRC, whereas polymor-
phisms in PTGER2 were associated with lower CRC
risk (Hoeft et al., 2010). PGE2 promoted human LoVo
colon cancer cell proliferation and migration through
activation of PI3K/Akt and glycogen synthase kinase
3b/b-catenin pathways; this could be prevented by the
nonselective EP2- or EP4-receptor antagonist, AH6809
(EP1/2 and DP1 antagonist) or AH23848 (EP4/TP
antagonist), respectively (Hsu et al., 2017). PGE2 and
the EP2-receptor agonist butaprost promoted the
survival of human colorectal carcinoma-15 cells,
another human colon cancer cell line, and this was
also prevented by AH6809 (Shehzad et al., 2014). In
mice, deficiency of the EP2 receptor or treatment
with the EP2-receptor antagonist, PF-04418948, re-
duced azoxymethane and dextran sodium sulfate–
induced colon tumorigenesis associated with down-
regulation of proinflammatory genes (e.g., TNF-a, IL-6,
CXCL1, and COX-2) in tumor-associated fibroblasts
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and neutrophils (Ma et al., 2015). Thus, further studies
are needed to understand the differential roles of PGE2

in gastrointestinal homeostasis, such as, for example,
the underlying mechanisms of how PGE2 protects
against acute gastrointestinal injury and promotes
mucosal regeneration but also promotes chronic (espe-
cially T cell–mediated) intestinal inflammation and
colorectal cancer.
4. Lung Inflammation. PGE2 and PGI2 are gener-

ally bronchoprotective, although these two prostanoids
can increase inflammatory Th1 and Th17 cell numbers
and function under autoimmune inflammatory conditions
in other organs. In patients with aspirin-exacerbated
respiratory disease, the PGE2-EP2 pathway is down-
regulated, but is associated with upregulation of PGD2

and leukotrienes as well as overactivation of type 2 innate
lymphoid cells (Rusznak and Peebles, 2019). Using
immunohistochemistry on human bronchial biopsy, it
was reported that patients with aspirin-sensitive asthma
had increased bronchial mucosal neutrophil and eosino-
phil numbers but reduced percentages of T cells, macro-
phages, mast cells, and neutrophils expressing EP2
(Corrigan et al., 2012). Given that EP2-receptor agonists
were the only prostanoid-EP agonists to inhibit cytokine
production in peripheral blood mononuclear cells, the
authors concluded that EP2 agonists might be beneficial
in patientswith asthma. Likewise, inmice, the PGE2-EP2
signaling suppressed allergen sensitization and thus
attenuated the development of Th2-polarized immunity
and airway inflammatory responses (Zasłona et al., 2014).
On the other hand, EP2-deficiency had the opposite effect
and enhanced type 2 eosinophilic responses and IgE
production in ovalbumin (OVA)-sensitized mice, whereas
administration of misoprostol (EP2/EP3/EP4 agonist) to
WT rather than EP2-deficient mice suppressed this in-
flammatory response and attenuated the IgE production
(Zasłona et al., 2014). Results of this study provide
evidence for a critical role of EP2 receptors in inhibiting
airway inflammation through the dampening down of the
Th2-cell cytokine surge. Such a view is not supported by
Church and colleagues (2012), who reported that
mPGES1-mediated PGE2 production in the lung contrib-
uted to the enhancement of allergic responses at the
effector phase after allergen challenge. Based on parallel
studies in congenic COX-1/2–deficient mice, they con-
cluded that the primary prostanoid that was protecting
against allergic inflammation was PGI2 and not PGE2.
This is consistent with much earlier studies reporting
that IP receptor–deficient mice have more severe
allergic reactions in the lung compared with WT mice
(Takahashi et al., 2002) andwithmore recent studies, in
which deletion of mPGES-1 increased vascular pro-
duction of PGI2 presumed to be from the redistribution
of precursor PG substrate (Avendaño et al., 2018).
Evidence supporting this notion that PGE2 might
actually drive allergic inflammation comes from Gao
and colleagues (2016), who found that PGE2-EP2

signaling in B cells actually promoted IgE production
in OVA-induced asthma models. In trying to reconcile
these conflicting results, it is important to note that
genetic drift of mouse colonies almost certainly exists
in different laboratories. This may in turn affect the
nature of the allergic and inflammatory response
action, including the amount of IgE and the cytokine
profile generated with different immunization (e.g.,
the length of challenge) and experimental protocols
(see Church et al., 2012; Gao et al., 2016 for further
discussion).

Recently, PGE2-EP4/EP2 signaling has been reported
to inhibit mouse as well as human ILC2 cell activation,
which may contribute to control of allergic lung in-
flammation (Maric et al., 2018; Zhou et al., 2018b). By
using agonists and antagonists in mouse models, EP2/
EP4 receptors were reported to abrogate acute lung
injury and inflammation through actions on various
immune cells, including T cells, macrophages, B cells,
eosinophils, innate lymphoid cells, and endothelial cells
(Sheller et al., 2000; Sturm et al., 2008; Birrell et al.,
2015; Konya et al., 2015; Draijer et al., 2016; Felton
et al., 2018). Cicaprost, a potent and relatively selective
IP agonist, was shown to inhibit IL-33–induced allergic
lung inflammation through suppression of Th2 and
ILC2 responses (Zhou et al., 2016, 2018a; Jian et al.,
2017). Similarly, administration of ONO-1301, a novel
prostacyclin analog with TxA2 synthase inhibitory
activity, protected against OVA- and house dust mite–
induced airway inflammation and remodeling in mice
(Yamabayashi et al., 2012; Kimura et al., 2013).

These effects of PGE2 on lymphocytes are relevant for
lung diseases, such as hypersensitivity pneumonitis,
sarcoidosis, pulmonary fibrosis, and bronchial asthma.
In mouse models of asthma, the activation of the EP3
receptor on bronchial epithelial cells inhibited the
allergen-induced expression of chemokines (Hirata
and Narumiya, 2012). EP2-receptor agonists inhibited
GM-CSF release. EP4 receptors in humanmacrophages
inhibited proinflammatory cytokines (IL-8) release (Gill
et al., 2016), whereas EP4-receptor agonists inhibited
neutrophils infiltration in the mice lung (Konya et al.,
2015). In knockout mice, the EP4 receptor was involved
in eosinophil and neutrophil infiltration in in vivo
animal models of asthma, chronic obstructive pulmo-
nary disease (COPD), and inflammation (Birrell et al.,
2015). In human lung-transplant recipients, genetic
variation in PGES and EP4 coding genes have been
found to be associated with primary graft dysfunction
and decreased Treg suppressor cell function (Diamond
et al., 2014). It is imperative to further investigate why
PGE2 acts mainly as a suppressant in lung inflamma-
tion, whereas it can exert both protective and proin-
flammatory activities in most other organ systems.
With respect to manipulating PGE2 levels experimen-
tally, it is important to note that EP4 (and EP3) will be
activated at 10-fold lower concentrations (of PGE2) than
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EP2, whereas at high concentrations ($100 nM), the
PGF2a (FP) receptor will be significantly activated as
well as, in humans, the DP1 receptor (Clapp and
Gurung, 2015). Taken together, this is likely to make
the interpretation of the role of PGE2 in regulating
inflammation complex potentially hard to extrapolate
between different studies.
5. Skin Inflammation and Cancer. PGE2 synthases

and EP receptors are expressed in both human and
mouse skin. Multiple types of cells within the skin, such
as mast cells, macrophages, dendritic cells, and kerati-
nocytes, can all produce PGE2. In a mouse model of
delayed-type hypersensitivity, PGE2 and its receptor
agonists suppressed skin inflammation by increasing
the production of immunosuppressive type 2 cytokines
(e.g., IL-4 or IL-10) (Shreedhar et al., 1998; Miyauchi-
Hashimoto et al., 2001). Blockade of endogenous PGE2

production by a COX inhibitor or EP2 signaling by
a relevant antagonist enhanced the production of the
cytokine thymic stromal lymphopoietin from keratino-
cytes, whereas type 2 immune responses in the skin
were attenuated by administering an EP2-receptor
agonist (Sawada et al., 2019). Later on, PGE2 was
shown to promote contact hypersensitivity, whereas
EP4-receptor antagonist or EP4 deficiency reduced
hapten-induced skin inflammation, probably through
the action of EP4 receptors on skin dendritic-cell
migration and Th1/Th17 cell expansion (Kabashima
et al., 2003; Yao et al., 2009, 2013). Administration of
a selective EP1-receptor antagonist ONO-8713 during
the sensitization stage also suppresses hapten-induced
skin inflammation (Nagamachi et al., 2007). Further-
more, Lee and colleagues (2019) suggested that block-
ade of EP2 and EP4 signaling (using genetically
modified animals and receptor antagonists) reduced
the generation of pathogenic Th17 cells and psoriatic
skin inflammation. Blockade of the PGE2-EP4 pathway
restricted allergic contact dermatitis in mice associated
with reduced IL-22 production from T cells (Robb et al.,
2018). In human inflamed skin (both atopic and psori-
atic), the levels of PGE2 and gene expression of its
synthases and receptors were found to be increased, and
effective therapies downregulated PGE2 pathway–
related gene expression (Fogh et al., 1989; Robb et al.,
2018; Lee et al., 2019). In human keratinocytes, PGE2

suppressed CCL7 expression through EP2 and EP3
receptors, leading to a reduction of inflammatory T-cell
homingwithin the skin (Kanda et al., 2004). Thus, PGE2

seems to have differential and partially opposing effects
on different types of cells in human skin.
Development of skin tumor has long been known to be

associated with enhanced COX-2–PGE2-EP signaling
(Rundhaug et al., 2011). Deficiency of mPGES-1, the
key enzyme mediating PGE2 synthesis, prevented B16
melanoma cell growth in vivo, and treatment with an
EP4-receptor antagonist similarly inhibited not only
the growth of B16 tumor cells but metastasis to bone

marrow in mice (Inada et al., 2015). Oral, uveal, and
cutaneousmelanoma cells isolated from patients showed
reduced IL-8 production in vitro, which wasmimicked by
the (EP3 . EP1) receptor agonist sulprostone and
prevented by the EP3-receptor antagonist L-798106
(Venza et al., 2018).

Moving forward, a comprehensive understanding of
the actions for PGE2 and its receptors on distinct cell
types during skin inflammation will be particularly
important.

III. Cardiovascular System

A. Healthy Condition

1. Vascular Tone Regulation. The characterization
of prostanoid receptors in human blood vessels is
particularly important, and these results could provide
therapeutic approaches for different diseases. Because
of the fact that obtaining fresh human blood vessels on
a regular basis is tough, many studies have instead
focused on vessels obtained from different experimental
animal models. However, several differences occur
between vessels derived from human and rodents in
terms of the responsible EP-receptor subtype for vaso-
constriction/vasorelaxation induced by PGE2. For ex-
ample, the control of vascular tone by PGE2 in human
renal artery is regulated somewhat differently than
rodent renal artery. For example, in rat renal artery, 11-
deoxy-PGE1 (EP2 and EP4-receptor agonist) induced
relaxation, whereas butaprost (EP2-receptor agonist) is
relatively ineffective (Tang et al., 2000). The contraction
induced by higher concentrations of PGE2 is mimicked
by sulprostone, an (EP3 . EP1) receptor agonist (Tang
et al., 2000). Similarly, in vivo renal blood flow studies
in rats indicated that sulprostone caused transient
renal vasoconstriction, whereas prolonged relaxation
was obtained with EP4-receptor activation (Purdy and
Arendshorst, 2000). In mice, the deletion of individual
EP receptors demonstrated that EP2 receptor is partly
involved in renal vasodilatation, whereas EP1 and EP3
receptors are involved in renal vasoconstriction (Imig
et al., 2002). On the other hand, in human renal artery,
no role for the EP2, EP1, and EP3 receptors was
detected. Instead, the PGE2-induced relaxation was
mimicked by CAY10598 (EP4 agonist), and the PGE2-
induced contraction was blocked by the TP-receptor
antagonist, S18886 (Eskildsen et al., 2014). Moreover,
some studies have demonstrated that the pharmacology
and mechanism underlying the effect of IP-receptor
activation on vascular tone are different between human
and rodent blood vessels (Clapp and Gurung, 2015).

Another difference between human and experimental
animals has been observed in the regulation of pulmo-
nary artery vascular tone by PGE2. Studies performed
in human pulmonary artery demonstrated that sulpro-
stone (EP3 . EP1 agonist) contraction is insensitive to
TP-receptor antagonists (EP169 and GR32191) (Qian
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et al., 1994). This finding suggests the involvement of
EP3 receptors in PGE2-induced contraction in human
pulmonary artery. However, PGE2-induced relaxation
occurs via EP2 or EP4 receptors in rabbit pulmonary
artery contracted by norepinephrine (Kitamura et al.,
1976), unlike in proximal human pulmonary artery, in
which PGE2 fails to cause relaxation of arteries pre-
constricted with norepinephrine (Walch et al., 1999).
On the other hand, in some vessels similarities do

exist between humans and experimental animals in
terms of the role of PGE2 in regulating vascular tone.
Studies report that PGE2-induced vasodilatation occurs
via the EP4 receptor in saphenous vein derived from
many species, including from human, rabbit, piglet, or
guinea-pig tissue (Coleman et al., 1994; Lydford et al.,
1996; Jones and Chan, 2005; Wilson and Giles, 2005;
Foudi et al., 2011). It is important to note that
pharmacological tools for the characterization of EP-
receptor subtypes should be chosen carefully since they
can have different effects on human and rodents. For
example, GW627368X is frequently used as a selective
EP4-receptor antagonist, but it can also bind to TP
receptors in humans, whereas this is not the case in
other species (Wilson et al., 2006).
Several studies demonstrated that PGE2-induced

contraction is mostly mediated by EP3 receptor in
human “healthy” vessels, such as coronary, internal
mammary, intercostal, and pulmonary arteries (Foudi
et al., 2011; Kozłowska et al., 2012; Longrois et al., 2012;
Ozen et al., 2015). By contrast, the EP1 receptor is
involved in the contraction evoked by PGE2 in several
rodent vessels, including in rat renal artery, aorta, or
mesenteric artery (Michel et al., 2007; Xavier et al.,
2009; Silveira et al., 2014). On the other hand, the
relaxant effect of PGE2 in themajority of human vessels
is mediated by the EP4 receptor, whereas in rodents,
vasodilatation induced by EP2-receptor activation is
also observed (Imig et al., 2002; Davis et al., 2004; Foudi
et al., 2008, 2011; Maubach et al., 2009). In accordance
with this finding, PGE2 produces substantial hyperten-
sion in EP2 null mice (Kennedy et al., 1999). Somewhat
variable effects of gene deletion on systolic blood
pressure were reported, although mice in both studies
developed profound salt-sensitive hypertension but not
in controls (Kennedy et al., 1999; Tilley et al., 1999).
Taken together, this suggests a major role for EP2
receptors in regulating vascular tone and sodium
handling in the kidney, at least in mice.
PGI2 induces vasodilatation by the activation of IP

receptor. The effects of PGI2 analogs on vascular tone
have mostly been determined in in vitro studies using
pulmonary arteries. PGI2 analogs, such as treprostinil,
iloprost, and beraprost induced relaxation in both
human and rat pulmonary arteries (Benyahia et al.,
2013, 2015; Shen et al., 2019). However, when the
precontractile agent is endothelin-1, iloprost and tre-
prostinil are able to relax human pulmonary artery but

not rat pulmonary artery (Benyahia et al., 2015). On
the other hand, TP-receptor activation by high doses of
PGI2 elicits contraction in some rodent vessels, al-
though such an effect is not exhibited in human vessels
(Xavier et al., 2009; Baretella and Vanhoutte, 2016).
Relaxation by prostacyclin analogs in normal vascular
preparations is consistently enhanced over a wide
agonist concentration range through blocking EP3-
receptor function or Gi coupling and suggests tonic
activation of these receptors opposes the action of PGI2
and its analogs in the cardiovascular system (Clapp
et al., 2020). Overall, characterization of EP-receptor
subtypes and effects of IP/EP-receptor agonist/antag-
onist on vascular tone are still not determined in
several human vessels, such as coronary artery, ca-
rotid artery, or aorta. Further studies are warranted
and will provide therapeutic approaches for different
diseases, such as atherosclerosis or aneurysm.

B. Cardiovascular Diseases

1. Hypertension. The substantial roles of prosta-
noids in the regulation of blood pressure are highlighted
by the prohypertensive effects of nonsteroidal anti-
inflammatory drugs (NSAIDs) and COX-2 inhibitors
(Snowden and Nelson, 2011; Ruschitzka et al., 2017).
Likewise, when the PGIS gene is deleted, mice become
hypertensive and show fibrosis and vascular remodel-
ing in the kidney (Yokoyama et al., 2002) but not when
the IP receptor is deleted (Hoshikawa et al., 2001),
suggesting additional targets for PGI2 in the regulation
of vascular function, most likely through PPARs (Clapp
and Gurung, 2015). Elevated expressions of mPGES-1
and COX-2 are found in hypertensive patients, mice, and
rats versus their normotensive controls (Boshra et al.,
2011; Avendaño et al., 2016). Furthermore, deletion of
the mPGES-1 gene in hypertensive mice prevented
the increased vasoconstrictor response to angiotensin
2 (Ang-II) (Avendaño et al., 2018). In accordance with
this finding, an mPGES-1 inhibitor decreased the
contractile response to noradrenaline in human arteries
and veins (Ozen et al., 2017). Overall, both in human
and rodents, the enzymes responsible for the synthesis
of PGI2 and PGE2 are involved in the pathogenesis of
arterial hypertension.

Under physiologic conditions, there is a balance be-
tween the effects of EP1/EP3 receptor (vasoconstriction)
and those of EP2/EP4 receptor (vasodilation), whereas in
hypertensive models and patients with cardiovascular
disease, this balance is likely to be disrupted (Clapp and
Gurung, 2015). Consistentwith this notion, EP1 receptor
participated in impaired vascular function observed in
hypertensive animal models (Avendaño et al., 2016).
Moreover, in mice, a reduced systolic blood pressure was
observed upon treatment with various EP1-receptor
antagonists (ONO-8713, AH6809, SC51322) and with
deletion of the EP1 gene (Stock et al., 2001; Guan et al.,
2007; Rutkai et al., 2009). EP3-receptor agonists, such as
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sulprostone (EP3.EP1 agonist), MB28767, or SC46275
increased mean arterial pressure in wild-type mice
(Zhang et al., 2000), and increased renal blood flow was
observed in EP3-deficient mice (Audoly et al., 2001).
Furthermore, EP2- and EP4-receptor knockout mice
have elevated systolic blood pressure (Kennedy et al.,
1999; Tilley et al., 1999; Xu et al., 2019). The role of EP2
in the regulation of blood pressure in mice is supported
by the study, which revealed an association between
a polymorphism of the EP2 gene and essential hyper-
tension inmen (Sato et al., 2007). In contrast,mostlyEP3
agonists, such as sulprostone and misoprostol, which are
used as clinical practice, are associatedwith an increased
incidence of ischemic stroke or myocardial infarction in
patients probably due to coronary constriction. Globally,
these results suggest a strong role for theEP3 receptor in
the control of arterial blood pressure (Guerci et al., 2013;
Vital et al., 2013; Masclee et al., 2018; Mazhar et al.,
2018; Schink et al., 2018). These in vivo observations are
supported by the numerous in vitro data on the vasocon-
strictor role of the EP3 receptor in human vasculature as
mentioned previously (Qian et al., 1994; Norel et al.,
2004a; Foudi et al., 2011; Longrois et al., 2012; Ozen
et al., 2015).
The expression of PGIS and the concentrations of the

stable PGI2metabolite (6-keto-PGF1a or 2,3-dinor-6-keto-
PGF1a) measured in hypertensive patients were found to
be similar or lower than those obtained for normotensive
patients (Lemne et al., 1992; Klockenbusch et al., 2000;
Vainio et al., 2004; Hellsten et al., 2012). A number of
polymorphisms in the PGIS gene have been described
that are not associated with essential hypertension in
humans (Nakayama et al., 2002a, 2003). However,
several studies performed in hypertensive animal
models, including spontaneously hypertensive rats,
Dahl salt-sensitive rats, deoxycorticosterone-salt hy-
pertensive rats, and renovascular hypertensive rats,
demonstrate increased levels of 6-keto-PGF1a, proba-
bly via the induction of COX-2 expression (Ishimitsu
et al., 1991; Matsumoto et al., 2016). Infusion of PGI2
or its mimetics exhibited similar results in humans
and rats and caused reductions of blood pressure
(Pickles and O’Grady, 1982; Frölich, 1990; Kato et al.,
1992; Zlatnik et al., 1999; Picken et al., 2019). Finally,
polymorphisms of the PGIS promoter have been discov-
ered and are associated with increased synthesis of
PGIS (Stearman et al., 2014).
The potent vasodilatory effects of PGI2 in the systemic

and pulmonary circulation are well documented (Clapp
andGurung, 2015). The evidence that IP receptors per se
regulate blood pressure under physiologic conditions is
not supported by gene-deletion studies, inwhichmice are
normotensive (Hoshikawa et al., 2001). However, loss
of the IP receptors leads to the development of reno-
vascular hypertension, and mice have an exaggerated
hypertensive and remodeling effect of hypoxia in the
lung. Thus in disease, the IP receptor appears to become

dysfunctional in the vascular system and, in doing so,
may unmask the contractile effects of PGI2 as observed
in spontaneously hypertensive rats (Félétou et al.,
2009). Not only in hypertensive rodent models but also
in diabetic and aged rats, IP-receptor signaling appears
to be impaired. PGI2 no longer caused vasodilatation
but became a prominent endothelium-derived vasocon-
strictor by activating TP receptors (Vanhoutte, 2011).
However, in most human vascular preparations, PGI2
or its analogs induced only relaxation (Benyahia et al.,
2015; Foudi et al., 2017).

Data from clinical trials in pulmonary hypertensive
(PH) patients showed that chronic treatment with PGI2
analogs leads to a significant fall in pulmonary arterial
pressure and pulmonary vascular resistance but does
not lead to a drop in systemic blood pressure with
standard doses (Picken et al., 2019). This may point to
a “relative” pulmonary-selective effect of these agents,
although common side effects of all IP agonists are
headache and flushing, suggesting a potent vasodila-
tory effect on cerebral and skin blood vessels, respec-
tively. The situation may be different in patients with
systemic hypertension, although the effects of IP ago-
nists on blood systemic arterial pressure in this condi-
tion have not been routinely studied.

2. Diabetes. The plasma concentrations of PGE2 in
diabetic patients were found to be similar or higher than
those obtained for nondiabetic patients (Arisaka et al.,
1986; Axelrod et al., 1986; Mourits-Andersen et al.,
1986). In diabetic rats, the plasma levels of PGE2 were
also increased (Axelrod and Cornelius, 1984; Craven
et al., 1987).

Studies performed in diabetic mice and rats demon-
strated that increased vascular tone and diabetic ne-
phropathywere reversed by eitherAH6809 orONO-8713
(EP1-receptor antagonists). EP1-receptor overexpres-
sion was detected in diabetic rat glomeruli by using
Northern blot analysis, and confirmation was obtained
by using in situ hybridization. This observation suggests
that EP1 receptors could contribute to the development
of hypertension and nephropathy in diabetic rodents
(Makino et al., 2002; Rutkai et al., 2009); however, the
contribution of EP1 receptor in diabetic patients needs to
be evaluated. The EP2 receptor could also be involved in
diabetic retinopathy in both humans and rats, possibly
because of accelerated retinal vascular leakage, leuko-
stasis, and endothelial cell apoptosis (Wang et al., 2019).
On the other hand, other studies performed on
streptozotocin-induced diabetic rats showed that EP2
and EP4 receptors were involved in the protective roles
of PGE2 (Vennemann et al., 2012; Yasui et al., 2015),
highlighting the complex role of these prostanoid
receptors in different experimental models. Moreover,
the suppression of EP4 receptor–associated protein has
been suggested as a novel strategy for the treatment of
diabetes in mice (Vallerie et al., 2016; Higuchi et al.,
2019).
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In both diabetic patients and mice models, upregu-
lation of the EP3 receptor in pancreatic islet of
Langerhans has been reported by using real-time
PCR (Kimple et al., 2013; Amior et al., 2019). Block-
ade of the EP3 receptor by DG-041 (Su et al., 2008) in
combination with activation of EP4 receptor in-
creased b-cell proliferation in humans but not in mice
(Carboneau et al., 2017). Moreover, DG-041 had no
significant effects on the diabetic phenotype of mice
(Ceddia et al., 2019), whereas L-798106 (EP3-receptor
antagonist) has been shown to decrease insulin re-
sistance in db/db mice (Chan et al., 2016). In contrast
with this finding, genetic deletion of all three EP3
isoforms or deletion of only EP3a and EP3g isoforms
resulted in increased insulin resistance in mice when
they were fed a high-fat diet (Ceddia et al., 2016; Xu
et al., 2016).
The release of 6-keto-PGF1a was significantly de-

creased in both diabetic patients and rats (Lubawy
and Valentovic, 1982; Jeremy et al., 1987a; Brunkwall
and Bergqvist, 1992; Kalogeropoulou et al., 2002;
Bolego et al., 2006; Peredo et al., 2006), suggesting loss
of circulating PGI2. The expression of PGISwas lower in
subcutaneous arteries from diabetic patients, whereas
IP-receptor expression remained unchanged (Mokhtar
et al., 2016b; Safiah Mokhtar et al., 2013). In contrast,
another study performed on human platelet showed
that IP-receptor expression was inversely correlated
with HbA1c levels (Knebel et al., 2015), which may
contribute to platelet hyperactivity in humans with
type 2 diabetes. This is certainly consistent with the
heightened thrombotic state observed in mice not
expressing the IP receptor (Hoshikawa et al., 2001).
Furthermore, PGIS- and IP-receptor expressions
were decreased in Zucker diabetic fatty rats and
streptozotocin-induced diabetic rats, respectively
(Nasrallah and Hebert, 2004; Lu et al., 2005). Even
though the expression of the IP receptor was not
changed in diabetic patients (Safiah Mokhtar et al.,
2013), PGI2-induced relaxation was increased in coro-
nary arterioles of patients with diabetes, presumably to
compensate for decreased nitric oxide bioavailability
(Szerafin et al., 2006). In contrast, there was no compen-
satory role of PGI2 in streptozotocin-induced diabetic
rats (Mokhtar et al., 2016a), whereas PGI2-induced
contraction was increased, and the relaxation induced
by IP-receptor agonist was decreased in diabetic mice
(Kimura et al., 1989; Przygodzki et al., 2015).
3. Abdominal Aortic Aneurysm. Dilatation and

weakening of the aorta in abdominal aortic aneurysms
(AAAs) are accompanied by an alteration in the blood
vessel, such as an increase of local inflammation,
smooth muscle cell apoptosis, elevated oxidation stress,
and especially extracellular matrix degradation via
matrix metalloproteinase (MMP) activity (Han et al.,
2018). Several research groups (including our own)
have demonstrated that PGE2 release and mPGES-1

expression were increased in vascular preparations
derived from AAA patients (Camacho et al., 2013;
Solà-Villà et al., 2015; Gomez et al., 2016). These
in vitro results are supported by clinical studies, which
demonstrated a lower aneurysm growth rate in patients
receiving NSAIDs (Walton et al., 1999). In line with
human studies, Ang-II–induced AAA formation in mice
resulted in increased PGE2 levels and deletion of
mPGES-1 protected against AAA formation (King
et al., 2006; Wang et al., 2008).

The role of EP-receptor subtypes has also been
investigated in the pathogenesis of AAA. In human
AAA samples, higher EP4-receptor expression versus
normal samples was demonstrated by real-time PCR
studies (Camacho et al., 2013). Exposure of aortic
smooth muscle cells (SMCs) and macrophages derived
from human AAA preparations to EP4-receptor antag-
onists (CJ-42794 or ONO-AE3-208) decreased MMP
activation and proinflammatory cytokines secretion
(Cao et al., 2012; Yokoyama et al., 2012; Mamun et al.,
2018). These findings suggested that EP4-receptor
antagonists could be a therapeutic target for the
treatment of AAA. Similarly, administration of EP4-
receptor antagonist or deletion of the EP4 receptor in
ApoE knockout mice reduced AAA formation via dimi-
nution of cytokine/chemokine levels andMMP activities
(Cao et al., 2012; Yokoyama et al., 2012; Mamun et al.,
2018). However, there is one contradictory study per-
formed in hyperlipidemic mice. In this study, deficiency
of EP4 receptor increased AAA formation induced by
Ang-II (Tang et al., 2011b). As described above (in
section II. A. 4. Macrophages), it has recently been
shown that deletion or antagonism (PF-04418948) of
the EP2 receptor is responsible for reduced macrophage
infiltration and intracranial aneurysm formation in
rodents (Aoki et al., 2017a,b; Shimizu et al., 2019).
Taken together, these results suggest that aneurysm
development involves SMC and macrophage crosstalk
with EP2 and/or EP4-receptor activation, in human and
rodent models. As a hypothesis, the EP receptors
involved could be dependent on the type of aneurysm
(aortic or intracranial artery). Overall, most studies
have addressed the role of the EP4 receptor in human
AAA development, and the roles of EP2 and EP4
receptors were investigated in rodent models. EP3-
receptor subtypes were also detected in aortic SMCs
derived from patients with or without AAA (Bayston
et al., 2003), and some EP3 mRNA splice variants were
differentially expressed between human aortic SMC
derived from control versus AAA patients. Further
investigations may shed light on a potential novel role
of EP3 receptors in arterial aneurysms.

In contrast, only a few studies investigated the role of
PGI2 and its receptor in the pathogenesis of AAA. Solà-
Villà and colleagues (2015) demonstrated that there
were increased PGE2 levels in human AAA samples,
which were significantly correlated with enhanced levels
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of PGI2 released from the tissue samples, whereas in
other studies there was no change in PGI2 levels from
human AAA samples obtained from patients with Mar-
fan syndrome (Soto et al., 2018). However, Wang et al.
(2008) demonstrated that deletion of mPGES-1 gene
increased 2,3-dinor-6-keto-PGF1a concentrations in
urine of mice with Ang-II–induced AAA. Although this
suggested that PGI2 has a protective effect against AAA
formation in mice, further studies in both human and
rodents need to be conducted to substantiate the role and
mechanism of PGI2 in AAA development.
4. Obesity. Obesity is defined as a low-grade in-

flammatory disease and associated with many cardio-
vascular diseases, including diabetes, hypertension,
and metabolic syndrome (Ceddia et al., 2016). Since
PGE2 and PGI2 are induced under inflammatory con-
ditions, several studies have focused on the role of these
mediators in the development of obesity.
Recently, we and other groups have demonstrated

that PGE2 levels in plasma and omental adipose tissue
are greater in obese patients (García-Alonso et al., 2016;
Ozen et al., 2019), whereas there are conflicting results
in terms of the PGE2 levels measured in obese rodent
models (Pham Huu Chanh et al., 1987; Cunha et al.,
2010; Rocha-Rodrigues et al., 2017). Another difference
has been in the detected level of mPGES-1 expression
between obese patients and obese rodents: mPGES-1
expression remained unchanged in the adipose tissue
of obese patients, whereas it is decreased in those
obtained for obese mice (Hétu and Riendeau, 2007;
García-Alonso et al., 2016). EP3 mRNA expression is
significantly and consistently upregulated in primary
adipocytes isolated from high-fat diet–induced obese
rats and human subjects (Chan et al., 2016). Moreover,
EP3 mRNA levels are positively correlated with the
body mass index in humans and TNF-a and MCP-1
levels in adipose tissue (Chan et al., 2016). On the other
hand, downregulation of EP3 isoforms in high-fat diet–
induced obese mice was reported by using bothWestern
blot and real-time PCR techniques (Xu et al., 2016). In
accordance with these findings, other studies indicated
that EP3 knockout mice had an obese phenotype with
abnormal lipid distribution and accumulation versus
wild-type mice (Sanchez-Alavez et al., 2007; Ceddia
et al., 2016). In contrast, short-term treatment DG-041,
an EP3-receptor antagonist, had no effect on body
composition and glycemic control in obese diabetic mice
(Ceddia et al., 2019). Overall, the roles of mPGES-1
enzyme and EP3 receptor in obesity have been evalu-
ated in many studies; however, there are several differ-
ences documented between human and rodents.
The roles of other EP-receptor subtypes have so far

only been determined in obese animal models but not in
obese patients, and this should be evaluated in future
studies. The EP4-receptor agonist TCS 251 induced
a greater relaxation in coronary arterioles derived from
obese rats (Santiago et al., 2016), and this could be due

to increased EP4-receptor expression in obesity. En-
hanced EP4-receptor expression could have protective
roles since the activation of EP4 receptor is involved in
the reduction of adipose tissue inflammation (Tang
et al., 2015; Yasui et al., 2015). On the other hand, only
one study demonstrated that EP2 levels are signifi-
cantly decreased in macrophages of obese diabetic mice
(Hellmann et al., 2013); however, the role of EP2
receptor in the development of human obesity remains
to be elucidated. Furthermore, it should be noted that
in the Hellman study, only Western blot techniques
were used for quantification of the EP receptor. Since
antibodies for EP receptors are generally not very
specific unless verified by small interfering RNAs,
gene deletion, or expression systems, other techniques,
such as in situ hybridization or PCR, are necessary for
verification.

In humans, weight reduction induces a significant
decrease of 6-keto-PGF1a production in adipose tissue
(Katz and Knittle, 1991). In contrast, in high-fat diet–
induced obese rats, spontaneously hypertensive obese
rats, or obese Zucker rats, there is no change, or there is
a decrease in 6-keto-PGF1a levels (Goodwill et al., 2008;
Hodnett et al., 2009; Mendizábal et al., 2013; Vendrame
et al., 2014; Lee et al., 2017; Lemaster et al., 2017).
PGI2-mediated vasodilatation is impaired in patients
with obesity and metabolic syndrome (Limberg et al.,
2013). In accordance with this finding, in obese Zucker
rats, a decrease of PGI2-induced vasodilatation is
observed, and the contraction response induced by
PGI2 via TP-receptor activation is increased (Xiang
et al., 2006; Baretella and Vanhoutte, 2016). On the
other hand, another study performed on these rats
demonstrated that neither IP nor TP-receptor
expression was changed by immunofluorescence
studies (Hodnett et al., 2009). Overall, even though
6-keto-PGF1a production is different between human
and rodents in obesity, vasodilator effects of PGI2
were decreased in both obese patients and rodents.
The mechanism underlying this decrease needs to be
elucidated in obese patients; future investigations
could thus provide novel therapeutic aspects espe-
cially for obesity-related cardiovascular diseases.

5. Atherosclerosis. The levels of PGE2 are increased
in preparations with atherosclerotic lesions and plasma
from atherosclerotic patients and rodents (Rolland et al.,
1984; Gómez-Hernández et al., 2006a; Pang et al., 2019).
Elevated levels of mPGES-1 expression were observed in
human atherosclerotic preparations (Gómez-Hernández
et al., 2006a), and the deletion of mPGES-1 gene in
mice retarded atherosclerosis and neointimal hyperplasia
(Wang et al., 2006, 2011). This protection may in part be
conferred bya compensatory increase inPGI2 levels,which
is associated with deletion of mPGES-1 in mice. Using
double-knockout mice (mPGES-1 and IP), protection from
injury was lost, and neointima formation was more severe
compared with IP-deficient mice, confirming a role for
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PGE2 as well as PGI2 in restraining the neointimal
response to injury (Hao et al., 2018).
There are contradictory results for the involvement of

EP1 receptor in the pathogenesis of atherosclerosis.
One study demonstrated that EP1 receptor was not
detected in human carotid plaques (Cipollone et al.,
2005), whereas another study demonstrated the expres-
sion of EP1 receptors in the shoulder of plaques by
Western blot, PCR, and immunohistochemical techi-
ques (Gómez-Hernández et al., 2006a). In addition,
patients treated with statins had decreased EP1-
receptor expression in atherosclerotic plaques, which
may be associated with the beneficial effects of statins
(Gómez-Hernández et al., 2006b). EP2-receptor ex-
pression was detected in human carotid and femoral
plaques, but there was no difference in EP2-receptor
expression levels between atherosclerotic and non-
atherosclerotic preparations, as determined by West-
ern blot, PCR, and immunohistochemical studies
(Gómez-Hernández et al., 2006a,b; Muto et al., 2010).
Interestingly, some oxidized phospholipids that accu-
mulate in atherosclerotic lesions have been found to
activate EP2 receptors and might hence play a role in
atherogenesis in humans (Li et al., 2006). EP2 recep-
tors have also been implicated in a mouse atheroscle-
rosis model, although with a different angle: vascular
SMC from EP2 knockout mice showed increased
migration and proliferation, suggesting that EP2-
receptor activation could be beneficial for the treatment
of vascular remodeling, as observed in atherosclerosis
(Zhu et al., 2011).
There is a significant increase of EP3-receptor ex-

pression in human carotid plaques, which was detected
by Western blot, PCR, and immunohistochemical stud-
ies (Gómez-Hernández et al., 2006a). On the other hand,
another study revealed that oxidation of low-density
lipoprotein decreased EP3-receptor expression in hu-
man macrophages. The downregulation of EP3 expres-
sion by oxidized low-density lipoprotein resulted in
impairment of EP3-mediated anti-inflammatory effects
(Sui et al., 2014). Hypercholesterolemia and increased
diet-induced atherosclerosis were observed inmice with
genetic deletion of hepatocyte-specific EP3 receptor
(Yan et al., 2017). These studies suggest that EP3-
receptor activation could have beneficial roles in the
treatment of atherosclerosis and hypercholesterolemia.
In contrast, the study performed in mice using different
prostaglandin receptor antagonists and small interfer-
ing RNA revealed that EP3a and b splice variants are
involved in neointimal formation in response to injury
(Zhang et al., 2013a).
The overexpression of EP4 receptor was detected in

human carotid atherosclerosis by Western blot, PCR,
and immunohistochemical studies, and the EP4 re-
ceptor was shown to be involved in destabilization of
the plaques by the regulation of MMPs (Cipollone
etal., 2005; Gómez-Hernández et al., 2006a). Similarly,

PGE1-OH, an EP4-receptor agonist, stimulatedMMP-
9 expression in macrophages of mice (Pavlovic et al.,
2006). The deletion of the EP4 receptor in mice macro-
phages reduced aortic atherosclerosis (Babaev et al.,
2008), whereas deletion of the EP4 receptor in bone
marrow–derived cells in mice did not change athero-
sclerotic lesion size but increased inflammation (Tang
et al., 2011a). A recent study demonstrated that hyper-
cholesterolemia was observed in EP4 knockout mice, and
treatment with EP4-receptor agonist (CAY10580) in
mice fed with a high-fat diet prevented diet-induced
hypercholesterolemia (Ying et al., 2018). Consistent
with a role for EP4 receptors in re-endothelialization
after angioplasty-wire injury, deletion of EP4 in
endothelial cells was enhanced while EP4 agonists
protected against neointimal formation (Hao et al.,
2018). In humans, PGE2 decreased chemokine levels
in human macrophage through EP4-receptor activa-
tion, and this could prevent atherosclerotic plaque
development (Takayama et al., 2002, 2006). The role
of EP4 receptor in atherosclerosis was studied in more
detail in both humans and mice by using genetic
deletion or selective receptor agonist/antagonists;
however, results regarding the role of other EP-
receptor subtypes are contradictory, and mechanisms
of their beneficial or harmful effects are not fully
understood yet.

The link between PGI2 signaling and atherosclerosis
is highlighted by the side effects of COX-2 inhibitors via
their inhibitory effect on PGI2 levels. Generally, PGI2
has been found to play athero-protective roles. At the
time of the development of PGI2 for the treatment of
pulmonary arterial hypertension (PAH), much of the
focus of the clinical use of PGI2 was on the treatment of
peripheral vascular diseases, such as critical limb
ischemia associated with atherosclerosis and Buerger
disease reviewed in Clapp and Gurung (2015). More-
over, PGI2 has an inhibitory effect on platelet-derived
growth factor (PDGF) production, which plays an
important role on SMC proliferation and neointimal
formation in atherosclerosis. Both antiproliferative and
also lipid-lowering effects of PGI2 were observed in
aortic cells derived from both human and rodents and
lead to antiatherosclerotic effects (Clapp and Gurung,
2015). The urinary levels of 2,3-dinor-6-keto-PGF1a are
greater in patients and mice with atherosclerosis and
suggest that greater PGI2 production could act as
a compensatory mechanism. In addition, it should be
noted that the measurement of the urinary metabolite
2,3-dinor-6-keto-PGF1a reflects kidney synthesis PGI2
and is not representative of total production in whole
body.However, another study performed onpatientswith
atherosclerotic diseases demonstrated that PGI2 levels
are not associated with major adverse cardiovascular
events and vascular inflammation (Wang et al., 2018).

IP-receptor expression was decreased in human
atherosclerotic plaques (Di Taranto et al., 2012), and
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an IP-receptor mutation was associated with athe-
rothrombosis in a patient cohort with a high risk of
cardiovascular disease (Arehart et al., 2008). Simi-
larly, the genetic deletion of IP receptor in mice or
pharmacological inhibition of PGI2 by COX-2 inhibitors
resulted into a significant acceleration in atherogenesis
(Kobayashi et al., 2004; Gitlin and Loftin, 2009). In
accordance with this finding, PGI2 analogs (octimibate
and BMY 42393) reduced early atherosclerosis in hyper-
lipidemic hamster (Kowala et al., 1993).
6. Cerebral Stroke. Two types of strokes are reported

in literature: ischemic and hemorrhagic stroke
(Mehndiratta et al., 2015). In a rat model of ischemia
stroke, an upregulation of COX-2 mRNA is observed
after the occlusion of the middle cerebral artery, and
this leads to increased production of PGE2 by 292% 6
57% after 24 hours (Nogawa et al., 1997). Similarly,
PGE2 production is increased after 24 hours of brain
ischemia in mice, and it is associated to a significant
increased level of COX-2 mRNA and proteins (Yokota
et al., 2004). Similar results are found in humans, with
increased mRNA and protein levels of COX-2 found in
post-mortem infarcted human brain (Sairanen et al.,
1998). The COX-2 inhibitor, NS-398, attenuated the
elevation of PGE2 in the postischemic brain and reduced
the volume of infarction (Nogawa et al., 1997). Another
study demonstrated that deletion of mPGES-1–coding
gene inmice abolished postischemic PGE2 production in
the cortex, and that is associated with a reduction of
myocardial infarction, edema, and cell death in com-
parison with WT mice (Ikeda-Matsuo et al., 2006). In
rats, inhibition of autophagy after an ischemic stroke
shows a significant decreased level of proinflammatory
molecules, such as PGE2 (He et al., 2019). The impor-
tant role of PGE2 is observed in adult human, wherein
COX-2/PGE2 pathway is associated with the middle
cerebral artery occlusion and the hemorrhagic stroke in
patients with Moyamoya disease caused by blocked
arteries at the base of the brain. Furthermore, COX-2
and mPGES-1 were found abundant in the vascular
walls of middle cerebral artery and superficial temporal
artery in patients with Moyamoya disease (Zhang et al.,
2016a). In line with these results, it was found that the
polymorphism of COX-2 (-765G.C) in humans is linked
to a decreased risk of stroke (Cipollone et al., 2004),
highlighting a strong link between COX-2 and en-
hanced cardiovascular risk.
The genetic deletion of EP1 receptor is related to

a neurotoxic effect in mouse model of brain transient
ischemia (Zhen et al., 2012). Treatment with the EP1-
receptor antagonist, SC51089 or EP1 gene deletion
demonstrated an improvement of middle cerebral artery
occlusion in mice (Kawano et al., 2006) and reduced
neuronal death after an episode of transient forebrain
ischemia (Shimamura et al., 2013). Moreover, EP1
knockout mice were associated with a decreased
ischemic lesion after stroke and increased cerebral

blood flow (Ahmad et al., 2006; Saleem et al., 2007).
Another study showed that in an ischemic stroke
model, pretreatment with a specific EP1-receptor an-
tagonist, ONO-8713, reduced the size of the infarct
(Ahmad et al., 2008). Finally, it was shown that in-
hibition of EP1 receptor improved the survival of
hippocampal slices (in culture) from mice with ische-
mic stroke induced by oxygen-glucose deprivation
(Zhou et al., 2008). These observations suggested that
EP1-receptor antagonists could be therapeutic tar-
gets in ischemic stroke.

The EP2 receptor appears to have an important
beneficial role in reducing cerebral ischemia in an
experimental model of stroke (Andreasson, 2010). Consis-
tent with this, genetic deletion of EP2 receptor resulted in
increased infarct volumes in mice (McCullough et al.,
2004; Liu et al., 2005). Moreover, pharmacological activa-
tion of EP2 by ONO-AE1-259-01 significantly reduced the
infarct volume in mice (Ahmad et al., 2010). However,
recent studies demonstrated that neuronal EP2-receptor
expression is induced after cerebral ischemia (Liu et al.,
2019). Validation of the anti-EP2 antibody used in that
studywas performed by using cerebellar lysates andHEK
cells overexpressing the EP2 receptor. The blockade of
EP2 inmice contributed to cerebro-protection by reducing
neuroinflammation (Liu et al., 2019), and EP2 knockout
mice were shown to be more protected from intracerebral
hemorrhage strokes (Leclerc et al., 2015b).

EP3 receptor is the most abundant receptor in brain
(Leclerc et al., 2016) and appears to play an important
role in acute ischemic stroke. A study showed that
activation of EP3 receptor with ONO-AE-248 increased
infarct size in experimental stroke (Ahmad et al., 2007).
In the same context, the genetic deletion of EP3 receptor
in a model of cerebral ischemia resulted in a reduction
in cell death and infarction volumes induced by oxygen
and glucose deprivation (Saleem et al., 2009). Deletion
of EP3 receptor inmice suppressed damage to the blood-
brain barrier, activation of microglia, and neutrophil
infiltration into the ischemic cortex (Ikeda-Matsuo
et al., 2011). In intracerebral hemorrhage, the genetic
suppression of EP3 resulted in a decrease in intracere-
bral hemorrhage–induced brain damage and improved
functional recovery. In addition, EP3 knockout mice
showed a significant reduction in astrogliosis, micro-
glial activation, blood-brain barrier degradation, and
neutrophil infiltration. Overall, these studies suggested
a detrimental role of the PGE2-EP3–signaling axis in
modulating brain injury, inflammation, and neurologic
functional recovery (Leclerc et al., 2015a).

In amousemodel of cerebral ischemia, EP4 activation
by ONO-AE1-329 reduced infarct volume, and deletion
of EP4 exacerbated stroke injury (Liang et al., 2011).
Similarly, treatment by an EP4 agonist, L-902,688,
reduced infarct volume after ischemic stroke in mice
and rats (Akram et al., 2013; DeMars et al., 2018). In
humans, no difference of EP4-receptor expression was
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detected in blood of ischemic stroke patients versus
asymptomatic patients by real-time PCR studies
(Ferronato et al., 2011). Further studies are necessary
to examine the roles of EP receptors and the potentially
beneficial effects of agonists/antagonists in cerebral
stroke.
The possible beneficial effect of PGI2 in stroke was

explored many years ago in humans. Accordingly,
treatment with PGI2 in patients diagnosed with ische-
mic stroke had a positive impact on stroke recovery with
no neurologic deficit or minor residual hemiparesis
(Gryglewski et al., 1983). Other clinical trials and
studies in humans demonstrated that PGI2 infusion
showed beneficial effects after a stroke (Hsu et al.,
1987). Moreover, PGI2 agonists climprost (TTC-900) or
TEI-7165 were described to have protective effects on
postischemic neuronal damage in a gerbil model
(Matsuda et al., 1997; Cui et al., 1999).
IP-receptor activation can attenuate anatomic and

functional damage after ischemic stroke. The infarct
volumes and neurologic deficit scores are significantly
greater in IP knockout mice after both transient and
permanent middle cerebral artery occlusion. Treatment
with the IP-receptor agonists beraprost or MRE-269
before and after transient middle cerebral artery occlu-
sion reduced the neurologic deficit score and infarct
volume in WT mice (Saleem et al., 2010; Yang et al.,
2017). Moreover, several studies performed on animals
demonstrated beneficial roles of PGI2 in cerebral blood
flow (Bentzer et al., 2003; Lundblad et al., 2008).
However, administration of PGI2 did not change cere-
bral blood flow in human after subarachnoid hemor-
rhage (Rasmussen et al., 2015). On the other hand, in
another study performed in patients with cerebral
infarction, beraprost plus aspirin was found to be more
effective than aspirin alone to reduce the recurrence of
cerebral infarction or death (Chen et al., 2017). More-
over, an association between polymorphism of the IP-
receptor gene and platelet activation was found in
patients with cerebral infarction (Shimizu et al., 2013).
7. Arrhythmia. The study performed on rabbits

demonstrated that PGE2 prevented drug-induced tor-
sade de pointes, which is life-threatening arrhythmia
(Farkas and Coker, 2003). Antiarrhythmic effect of
PGE2 was also demonstrated in humans (Mest and
Rausch, 1983). In contrast, microinjection of PGE2 in
rats or superfusion of the rat cardiac myocytes with
PGE2 resulted in tachycardia (Li et al., 1997; Zaretskaia
et al., 2003), whereas 41% of women receiving miso-
prostol, EP2/EP3/EP4 agonist, had late decelerations or
bradycardias (Kolderup et al., 1999). EP3 receptors
located presynaptically on sympathetic nerve fibers
supplying the heart of pithed rats strongly inhibit the
neurogenic tachycardia. Sulprostone (EP3 . EP1), but
not the IP/EP1-receptor agonist iloprost, inhibited the
increase in electrically provoked heart rate dose-
dependently. L-826266 (EP3-receptor antagonist)

has no effect on basal heart rate or diastolic blood
pressure but reduces the inhibitory effect of sulpro-
stone (Kozłowska et al., 2012).

PGI2 induced a marked reduction in the contraction
rate of the rat cardiac myocytes and had a protective
effect against the arrhythmias (Li et al., 1997). Similar
effect was also observed in in vivo studies performed on
rats and showed that low doses of PGI2 reduced
arrhythmias induced by coronary artery ligation or
aconitine (Mest and Förster, 1978; Johnston et al.,
1983). However, in humans, PGI2 does not appear to
have a cardiac antiarrhythmic effect and may increase
the atrial and ventricular recurrent response. This effect
could be related to an increase in adrenergic tone
(Brembilla-Perrot et al., 1985). Increased excretion of 6-
keto-PGF1a has been observed in patients with ventric-
ular arrhythmia (Chlewicka and Ignatowska-Switalska,
1992). There are very few studies regarding the role of IP
and EP receptors in arrhythmia so far.

8. Pulmonary Circulation and Hypertension. In
non-PH large pulmonary vessels (.2-mm diameter),
activation of PGE2 and PGI2 receptors function in
multiple ways to control vascular tone. Constriction of
human pulmonary arteries induced by PGE2 is medi-
ated by activation of EP3 receptor (Qian et al., 1994;
Norel et al., 2004a), whereas EP1-receptor activation
mediates constriction of human pulmonary veins
(Walch et al., 2001). Indeed, EP1 antagonists enhance
iloprost and PGE2-induced relaxation in human pulmo-
nary veins and also underlie the contractions evoked by
these two agents in the same tissue (Walch et al., 1999;
Foudi et al., 2008). In large human pulmonary veins,
relaxation to PGE2 is mediated by the EP4 receptor
(Foudi et al., 2008), whereas the EP2 agonist ONO-AE1-
259 produces relaxation at relatively high concentra-
tions, although a nonselective effect on the EP4 receptor
is not excluded (Foudi et al., 2008). It is possible that the
different effects of PGE2 or EP-receptor agonists on
pulmonary arteries as compared with veins are related
either to differential expression of receptor subtypes or
to differential coupling of receptors, such as the EP4
receptor (that can activate cAMP synthesis through Gs

and also activate PI3K) (Hirata and Narumiya, 2012).
On the other hand, IP-receptor agonists are well
known to induce potent relaxation of pulmonary
arteries (and veins) derived from human and rodent
lungs (Haye-Legrand et al., 1987; Walch et al., 1999;
Norel et al., 2004a,b; Benyahia et al., 2013, 2015).
Apart from treprostinil, PGI2 and other stable ana-
logs (iloprost and beraprost) appear to be weaker
venous rather than arterial dilators (Benyahia et al.,
2013), likely to reflect the differential expression of
prostanoid receptors involved in regulating tone in
the lung. It should be noted that the functional roles
of EP-receptor subtypes on pulmonary vascular tone
are not well studied in resistance vessels, particu-
larly in relation to human lung microvessels.
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Contraction and thickening of arterial vascular wall
in lung are characteristics of PH. The urinary excretion
of the stable metabolite of PGI2 (2,3-dinor-6-keto-
PGF1a) is decreased in patients with PH compared with
control patients (Christman et al., 1992). In parallel
with this observation, the density of PGIS detected by
immunohistochemistry was lower in the pulmonary
arterial endothelium of patients with severe PH com-
pared with controls (Tuder et al., 1999). Recently,
diminution of PGIS density and 6-keto-PGF1a levels in
pulmonary artery, pulmonary artery smooth muscle
cells, and distal lung tissue derived from patients in PH
group-III have been described (Ozen et al., 2020a).
Furthermore, PGIS polymorphisms appeared to protect
against the development of PAH in families known to
harbor mutations that are strongly linked to the
disease, suggesting that PGIS might act as a modifier
gene influencing the penetrance in hereditary PAH
(Stearman et al., 2014). Very recently, three rare loss-
of-function PGIS variants were found in patients with
idiopathic PAH, providing evidence that PGIS might be
a susceptibility gene for PAH, possibly by causing
endothelial apoptosis (Wang et al., 2020). Interestingly,
patients with variants of the gene coding for PGIS
(PTGIS) were more sensitive to the vasodilatory effects
of iloprost, although the nature of such potentiation
remains unknown.
Ex vivo studies performed on preparations derived

from lung or pulmonary arteries have consistently
shown not only a reduction of PGI2 synthesis but also
of the IP-receptor expression in both patients with PH
and rats treated with monocrotaline and hypoxia that
develop PH (Lai et al., 2008; Falcetti et al., 2010;
Jiang et al., 2013; Li et al., 2018; Fan et al., 2019a;
Clapp et al., 2020; Ozen et al., 2020a,b). The impair-
ment of the PGI2 pathway in PH lungs underlies the
rationale for why the administration of vasodilators,
such as PGI2 or mimetics (IP agonists), are beneficial
in the treatment of PH patients awaiting lung trans-
plantation. This contrasts with EP4 and EP2 recep-
tors, whose vascular expression was preserved or
enhanced in human and experimental PAH, as con-
firmed by Western blot, real-time PCR, and immuno-
histochemical studies (Lai et al., 2008; Patel et al.,
2018; Clapp et al., 2020). However, some of these IP
agonists (epoprostenol, iloprost) have affinity for the
EP1 receptor (Abramovitz et al., 2000; Whittle et al.,
2012; Clapp and Gurung, 2015) with the potential of
constriction of human pulmonary veins (Walch et al.,
2001; Norel et al., 2004a). So far, there is no evidence
for such a role of EP1 receptors in rodent pulmonary
veins. Furthermore, some other IP agonists like tre-
prostinil are also potent EP2 agonists (Whittle et al.,
2012), which may combine with its potent activation of
other prostanoid receptors (IP and DP1) to promote
venodilation in pulmonary resistance vessels (Orie
et al., 2013).

For these reasons, PGE2 and activation of the EP
receptors are also of interest in PH. PGE2 concentra-
tions in plasma were reduced in chronically hypoxic PH
rats (Fan et al., 2019a), whereas in human pulmonary
arteries exposed to hypoxia, increased levels of PGE2

were detected (Yang et al., 2002). Recently, it has been
shown that EP2-receptor expression levels were in-
creased in human pulmonary artery SMCs and in the
lungs derived from PAH patients (Patel et al., 2018;
Clapp et al., 2020). This may not be surprising, given
that EP2-receptor expression can be enhanced in re-
sponse to PDGF and transforming growth factor-b
(TGF-b), which are key drivers of SMC proliferation in
PAH (Clapp et al., 2020). Based upon the high relative
abundance of EP2 over IP (84-fold) and the fact that
treprostinil has a 10-fold greater affinity at the EP2
receptor compared with the IP receptor (Whittle et al.,
2012), it can be predicted that treprostinil will be more
than two orders ofmagnitude (.800-fold) more active at
EP2 versus IP receptors in PAH cells. This might help
explain why activation of the EP2 receptor becomes
a more prominent mechanism than the IP receptor to
drive inhibition of pulmonary SMC proliferation by
treprostinil. It should be noted that EP2 receptors are
even more heavily expressed in adventitial fibroblasts
in PAH with little evidence of IP-receptor expression
(Clapp et al., 2020). EP2 receptors are known to have
a range of inhibitory effects on fibroblast function,
inhibiting migration, proliferation, and the transition
of fibroblasts to myofibroblasts. These findings offer
a new therapeutic perspective of how vascular wall
thickening and fibrosis could be targeted via a signaling
pathway that is robustly expressed in PAH.

It is important to understand the role of contractile
prostanoid receptors because these could limit the doses
of PGI2 mimetics given therapeutically or potentially
give rise to unwanted side effects. From studies con-
ducted so far, it would appear that the EP3-receptor
pathway is upregulated in PH, and this could occur for
a number of reasons (Clapp et al., 2020). Increased
expression of the EP3 receptor is found in human and
mice pulmonary arteries after exposure to hypoxia by
real-time PCR studies (Lu et al., 2015) in a monocrota-
line model of PAH (Morrison et al., 2012) or in pulmo-
nary arteries derived from PAH patients (Clapp
et al., 2020). Furthermore, deletion of the EP3 re-
ceptor strongly inhibited the progression of PH in-
duced by chronic hypoxia in rats. Similar results were
obtained with the treatment of EP3-receptor antag-
onist, L-798106 (Lu et al., 2015). Likewise, increased
sensitivity to the (EP3 . EP1) agonist sulprostone
occurred in PAH arteries obtained from monocrotaline-
treated rats, whereas beraprost (IP . EP3/TP agonist)
caused contraction in distal human pulmonary arteries
obtained fromPAHpatients with end-stage disease (Shen
et al., 2019). Such studies suggest a gain of function of the
EP3 receptor in PAH. This could be driven by EP3-
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TP–induced vasoconstrictive synergism, which has been
described in numerous blood vessels, wherein priming
with a TxA2 mimetic or a1 receptor agonist markedly
increases both the potency and size of contraction to EP3
agonists (Benyahia et al., 2015; Clapp and Gurung, 2015).
The consequence of enhanced EP3-receptor activation
would be to lower cAMP levels via its coupling to Gi,
which would thus have the potential to counteract the
effects of any IP-receptor agonist irrespective of whether
they can directly activate these contractile receptors (Orie
and Clapp, 2011). This may help to explain why vaso-
relaxation induced by PGI2 analogs is consistently en-
hanced over the entire concentration range when EP3
receptors are inhibited (Orie and Clapp, 2011; Morrison
et al., 2012). Overall, these findings suggest that EP3-
receptor antagonists could be a therapeutic target for PH.
Thus enhancedEP3-receptor expression togetherwith IP-
receptor downregulation may curtail the action of prosta-
cyclin in PAH patients with severe disease or limit their
therapeutic efficacy (Clapp et al., 2020).
EP4-receptor expression was not modified in pulmo-

nary arteries or lungs derived from chronically hypoxic
PH rats ormonocrotaline-treated rats and patients with
PAH; this was demonstrated by real-time PCR, West-
ern blot, and immunohistochemical studies (Lai et al.,
2008; Li et al., 2018; Fan et al., 2019a). However, our
recent study demonstrated that there is a decrease of
EP4-receptor expression in bronchi derived from PH
group-III patients by Western blot and real-time PCR
techniques (Ozen et al., 2020b). Another recent study
performed on hypoxia-induced PH rats revealed that
the beneficial effect of beraprost (PGI2 analog) is
mediated via the EP4 receptor–related pathway (Tian
et al., 2019). In accordance with this finding, the EP4-
receptor agonist, L-902,688, decreased PH right ven-
tricular hypertrophy in hypoxic PH mice and
monocrotaline-induced PH rats (Lai et al., 2018). In
contrast, one study showed that during hypoxia, the
vasoconstrictor effect of PGE2 is mediated through the
activation of the EP4 receptor on the rat intrapulmo-
nary artery (Yan et al., 2013).
Finally, PH as well as parturition, abortion, or

gastrointestinal ulcers are the only domains in which
EP and IP receptors are therapeutic targets in clinical
practice. Better knowledge of the prostanoid receptors
involved and the selectivity and the potency of the
compounds used in these clinical conditions is therefore
of utmost importance. Most of our knowledge about PH
and the development of pharmacological/therapeutic
strategies has focused on PH group-I (PAH). More
studies in PH patients from other groups are necessary;
the recently published work with human bronchi (Ozen
et al., 2020b) suggests that inhaled PGI2 analogs may
also have a promising therapeutic effect in PH group-
III, which is one of the most common and lethal forms of
PH. In PH group-III, PH is secondary to respiratory
diseases, such as COPD, so in this case, inhaled PGI2

could have a dual effect by decreasing airway resis-
tance, thus supplying more of this vasorelaxant drug
and oxygen to pulmonary arteries.

IV. Thrombosis

Platelets are involved in the development of athe-
rothrombotic diseases, such as stroke and myocardial
infarction, and, therefore, antiplatelet therapies are
a mainstay in cardiovascular diseases (Kuriyama
et al., 2010; Hubertus et al., 2014). In human and
mouse platelets, activation of the AA pathway leads
to the formation of various prostanoids (Mawhin
et al., 2015). Although in this review we focused on
the effects of PGE2 and PGI2 in thrombogenesis, it
should be noted that other prostanoids, such as TxA2

and PGD2, are also involved in the regulation of thrombo-
genesis by inducing (TP receptor) and inhibiting (DP1
receptor) platelet aggregation, respectively (Armstrong,
1996; Song et al., 2012; Crescente et al., 2019).

A. Role of Prostaglandin E2 on Platelet Function

Activated human platelets produce and release PGE2,
although at 30-fold lower concentration than TxA2

(Petrucci et al., 2011). PGE2 does not activate platelet
aggregation itself but has a concentration-dependent
biphasic effect on the aggregation of human andmouse
platelets (Philipose et al., 2010; Mawhin et al., 2015;
Pasterk et al., 2015). These effects comprise potentia-
tion of platelet aggregation at low concentration (nano-
molar) and inhibition of platelet aggregation at higher
concentration (micromolar) (Petrucci et al., 2011;
Pasterk et al., 2015). It is known that PGE2 activates
different membrane receptors on platelet named EP1,
EP2, EP3, and EP4 (Petrucci et al., 2011; Pasterk et al.,
2015). In mice, however, PGE2 at high concentration
was also found to activate IP receptors (Fabre et al.,
2001; Kuriyama et al., 2010).

1. Expression of Prostaglandin E2 Receptors in
Platelets. A large number of studies demonstrated
that human and mouse platelets express EP2, EP3,
and EP4 receptors (Paul et al., 1998; Kuriyama et al.,
2010; Hubertus et al., 2014; Pasterk et al., 2015). On the
other hand, although Petrucci et al. (2011) showed the
presence of the EP1 receptor in human platelets, other
studies were not able to detect EP1 receptor in human
and mouse platelets (Ma et al., 2001; Hubertus et al.,
2014). Supporting these latter studies, the EP1-receptor
agonist, ONO-DI-004, and the EP1-receptor antagonist,
ONO-8713, did not alter human platelet aggregation
(Iyú et al., 2010).

2. Prostaglandin E2 and Prostaglandin E2 Receptor
2. The action of PGE2 to inhibit platelet aggregation at
high concentrations is mediated by two receptors,
namely EP2 and EP4. Both receptors are coupled to
the Gs protein and increase the intracellular cAMP
concentration. Real-time PCR (RT-PCR) and Southern
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blot analysis demonstrated that there is relatively low
expression of EP2 receptor in human andmice platelets
(Paul et al., 1998; Ma et al., 2001). Despite the low levels
of EP2 receptors, the EP2-receptor agonists butaprost
and ONO-AE1-259 inhibited platelet aggregation in-
duced by the TP-receptor agonist U-46619 in human
andmouse platelets to a similar extent (Kuriyama et al.,
2010; Smith et al., 2010). This effect of the EP2-receptor
agonist was absent in platelets of EP2-receptor knock-
out mice (Kuriyama et al., 2010).
3. Prostaglandin E2 and Prostaglandin E2 Receptor

3. Multiple isoforms of the EP3 receptor are present in
human platelets, whose structures differ only by their
carboxy-terminal tails responsible for the specificity for
G-proteins (Kotani et al., 1995; Paul et al., 1998). EP3
has the potential to couple to Gs, Gi, or Gq proteins. In
human platelets, four isoforms of the EP3 receptor
(termed EP3-1b, EP3-II, EP3-III, and EP3-IV) were
detected (Paul et al., 1998). EP3 splice variant distri-
bution and function remain to be determined, but the
overall effect of the EP3 receptor in human and mouse
platelets is inhibition of cAMP production via Gi protein
(Gray and Heptinstall, 1991; Ma et al., 2001). The
activation of EP3 receptor potentiated platelet aggre-
gation induced by different agents in both humans and
mice (Philipose et al., 2010; Petrucci et al., 2011;
Hubertus et al., 2014). These in vitro results were also
confirmed in vivo using EP3 knockout mice, in which
thrombotic responses to AA were decreased (Ma et al.,
2001; Gross et al., 2007). Similar results were obtained
in ferric chloride–induced thrombosis in mice (Gross
et al., 2007).
To investigate the role of EP3 in thrombosis, EP3-

receptor antagonist (DG-041) and agonists [sulprostone
(EP3 . EP1 agonist), 17-phenyl trinor PGE2 (EP1
agonist)] were used. EP3-receptor agonists increased
platelet aggregation in humans and mice induced by
different platelet agonists (Heptinstall et al., 2008;
Pasterk et al., 2015; Theiler et al., 2016). Moreover,
the (EP3 . EP1) receptor agonist, sulprostone, aug-
mented the adhesion of human platelets to fibrinogen
and collagen under low shear stress. This effect was
prevented by the EP3-receptor antagonist L-798106
(Pasterk et al., 2015). Potentiation of PGE2-induced
platelet aggregation was inhibited by DG-041 in hu-
man, rat, and mouse platelets (Heptinstall et al., 2008;
Singh et al., 2009; Smith et al., 2010; Tilly et al., 2014).
In vivo studies performed on mice also demonstrated
that DG-041 reduced thrombosis but had no effect on
bleeding time (Tilly et al., 2014). In line with these
findings, one clinical study performed on healthy vol-
unteers demonstrated that DG-041 inhibited platelet
function without increasing bleeding time (Fox et al.,
2013). EP3-receptor antagonists could therefore be
a novel therapeutic approach for the treatment of
atherothrombosis without increasing the risk of hem-
orrhage, such as stroke or GI bleeding.

4. Prostaglandin E2 and Prostaglandin E2 Receptor
4. The inhibitory effect of PGE2 on human platelet
aggregation was abolished in the presence of MF-191,
an EP4-receptor antagonist. Moreover, EP4-receptor
agonist, ONO-AE1-329, inhibited platelet aggregation
induced by the TP-receptor agonists U-46619, adenosin
diphosphate, or collagen in human andmouse platelets.
These data suggested that the inhibition of platelet
aggregation by PGE2 is mediated by EP4 receptor in
humans (Philipose et al., 2010; Smith et al., 2010) and
mice (Kuriyama et al., 2010). However, there is a greater
inhibitory potency of ONO-AE1–329 in human platelets
than inmouse platelets (Kuriyama et al., 2010; Mawhin
et al., 2015). The PGE2-induced inhibition of platelet
aggregation was dramatically increased in EP3 and IP
double-knockout mice, suggesting that EP2- and EP4-
mediated inhibitory effect is augmented when the EP3
receptor is absent (Kuriyama et al., 2010). In both
human and mouse platelets, the potentiating effect of
PGE2 on platelet aggregation via EP3 receptor is pre-
dominant over any inhibitory effects of EP2 and EP4
receptors (Gross et al., 2007; Iyú et al., 2010; Kuriyama
et al., 2010; Hubertus et al., 2014). The inhibitory role of
the EP4 receptor had probably been concealed for some
time by the fact that it is the IP receptor rather than the
EP2 or EP4 receptors that mediate the inhibitory effect
of PGE2 onmouse platelets, as revealed by studies using
IP knockout mice (Fabre et al., 2001; Kuriyama et al.,
2010).

B. Role of Prostacyclin on Platelet Function

Among prostanoids, PGI2 is the most potent inhibitor
of human and rat platelet aggregation by binding to its
cognate IP receptor (Jones et al., 2006; Smith et al.,
2010; Crescente et al., 2019). IP-receptor expression
was demonstrated in both human and mouse platelets
(Kuriyama et al., 2010; Tourdot et al., 2017). IP receptor
activates AC through Gs protein and increases the
production of cAMP. High levels of cAMP activate
PKA, which suppresses various signaling pathways
involved in platelet function. For example, activation
of PKA decreases the release of Ca2+, thereby reducing
the activation of cytosolic phospholipase A2 and release
of AA from the phospholipid membrane, which in turn
decreases the production of prostanoids (i.e., TxA2 by
platelets) (Crescente et al., 2019). The in vivo role of
PGI2 in platelet aggregation was also examined in IP-
receptor knockout mice, which showed pronounced
susceptibility to thrombosis in response to ferric chlo-
ride associated with elevated thromboxane levels
(Murata et al., 1997).

The role of PGI2 in atherothrombosis in humans
was highlighted by the cardiovascular side effects
observed with COX-2 inhibitors, such as rofecoxib
(VioxxTM) and celecoxib (CelebrexTM). FitzGerald
and colleagues demonstrated that inhibition of PGI2
biosynthesis by these drugs could lead to hazardous

934 Norel et al.



cardiovascular events, including myocardial infarc-
tions and thrombotic stroke (Catella-Lawson et al.,
1999; McAdam et al., 1999). Furthermore, polymor-
phisms in PGIS gene in humans were found to be
associated with myocardial infarction (Nakayama
et al., 2002b) or enhanced platelet activation in
patient with deep venous thrombosis or stroke
(Patrignani et al., 2008; Shimizu et al., 2013). The
role of platelets as a disease-modifying process in
PAH is not well understood but is of particular
interest because platelets produce and release vaso-
active substances, such as TxA2, 5-hydroxytryptamine,
and platelet-derived growth factor, which may cause
harmful vasoconstriction and contribute to vascular
remodeling in PAH. With the exception of selexipag,
which is a highly selective, nonprostanoid IP-receptor
agonist devoid of activity at other prostanoid receptors
(Bruderer et al., 2014), all other IP agonists used
clinically or being developed (e.g., ralinepag) will
inhibit platelet function in vivo (Clapp et al., 2020).
The reason for this differential effect on platelet
function may be explained in part by selexipag acting
as a partial agonist in cAMP assays (Gatfield et al.,
2017). As already discussed, platelets have an active
EP3 and TP-receptor system, which will negatively
regulate basal cAMP levels, thereby likely preventing
selexipag from generating enough cAMP to oppose
platelet aggregation by endogenous circulating TxA2

and PGE2. Interestingly, the novel PGI2mimetic ONO-
1301 does not undergo receptor desensitization in plate-
lets because of its inhibitory action on TxA2 synthesis,
suggesting that the TP-receptor activation is strongly
linked to IP-receptor desensitization (Kashiwagi et al.,
2015), which is particularly relevant when TxA2 levels
rise as they do in PAH and in other cardiovascular
diseases.

V. Central and Peripheral Nervous System

A. Central Nervous System

Many studies in humans and in mouse models showed
important roles of PGE2 and PGI2 in the development
and/or progression of central nervous system disorders
(Bazan et al., 2002; Yagami et al., 2016).
1. Alzheimer Disease. Alzheimer disease (AD) is an

age-related dementia that is not only characterized
by b amyloid (Ab) protein aggregation and accumu-
lation but also by t protein hyperphosphorylation in
neurons (Guan andWang, 2019). Neuroinflammation
seems to play a critical role in the physiopathology of
AD (Akiyama et al., 2000). Indeed, PGE2 levels in
CSF were increased in AD patients with mild memory
impairment, whereas PGE2 levels were decreased in end-
stage AD patients (Combrinck et al., 2006). Interestingly,
neuronal COX-2 expression was also reported to be down-
regulated in end-stage AD patients (Yermakova and
O’Banion, 2001). mPGES-1 enzyme was present in

neurons, microglia, and endothelium in human healthy
brains, but its expression levelswere upregulated in both
mRNA and protein levels in AD patients (Chaudhry
et al., 2008). The mPGES-1 gene disruption protected
neurons from cytotoxic effect of Ab 31–35 fragment in
mice (Kuroki et al., 2012), indicating that mPGES-1-
PGE2 axis takes part in Ab-eliciting harmful effects on
neurons.

The role of EP1 receptor is still not clear in AD
initiation and progression in humans. The genetic
deletion of EP1 receptor decreased basal levels of Ab
in Swedish amyloid precursor protein (APPS)/preseni-
lin-1 (PS1) mice model (APPS- and PS1-mutated AD
model), and therefore, neurons in the absence of EP1
receptor are presumably more resistant to Ab-induced
toxicity (Zhen et al., 2012). The exacerbating role of EP1-
receptor signaling was also suggested by an in vitro study:
the blockade of EP1-receptor signaling with its antagonist
(SC51089) in human neuroblastoma cell line (MC65)
resulted in approximately 50% of reduction of Ab-induced
neurotoxicity (Li et al., 2013).

The genetic deletion of EP2 receptor in APPS mice
decreased the protein levels of Ab40 andAb42 aswell as
oxidative stress. Based on this study, an EP2-receptor
signaling is considered to elicit proinflammatory and
proamyloidogenic actions, at least in this AD model
(Liang et al., 2005).

Another likely possibility is that EP2-receptor path-
way may potentiate phagocytosis of Ab42 by microglia
in mouse AD model. Indeed, EP2 receptor has been
shown to activate microglial function in other neuro-
logic disorders, such as Parkinson Disease (PD) (see
next paragraph). It was also reported in mouse primary
neurons that pharmacological activation of EP2 or EP4
receptor rescued Ab42-induced cell death in a cAMP-
dependent manner (Echeverria et al., 2005). However,
there is no strong evidence showing a protective role of
EP2 pathway against AD in humans, and to date there
is no ongoing clinical trial by targeting EP2 receptor for
the treatments of AD patients (Cudaback et al., 2014).

Quantitative Western blot and immunohistochemis-
try analysis with human temporal cortex (postmortem
tissues) demonstrated increased expression of EP3
receptor in mild cognitive impairment and a further
increase in AD patients (Shi et al., 2012). These results
were in accordance with the elevated expression of the
EP3-receptor mRNA in hippocampus of mild-age APPS
mice (AD model). The deletion of the EP3 receptor in
these APPS mice decreased both Ab40 and Ab42 pro-
tein levels, with an attenuation of neuroinflammation
and the reduction of proinflammatory gene expression,
cytokine production, and oxidative stress (Shi et al.,
2012). A recent study described a particular aspect of
the EP3 pathway in APPS/PS1mice; the treatmentwith
EP3 . EP1 agonist, sulprostone, impaired synaptic
plasticity of specific neurons in the hippocampus. Such
a harmful effect of sulprostone was reversed by ONO-
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AE3-240, an EP3-receptor antagonist (Maingret et al.,
2017). The studies on AD patients still remain to be
evaluated for the use of EP3-receptor antagonists for
clinical purposes (Cudaback et al., 2014).
EP4-receptor pathway involves the regulation of

immune and proinflammatory responses in mouse AD
models (Woodling and Andreasson, 2016). Indeed, the
pharmacological suppression of EP4 receptor by using
ONO-AE3-208 and also the genetic ablation of EP4
signaling lead to an improvement of cognitive function
inmouse ADmodel (Hoshino et al., 2012). Nevertheless,
EP4-targeted strategies have not been carried out
clinically (Cudaback et al., 2014).
On the other hand, it was reported that PGI2 counter-

acts PGE2-induced IFN-g production levels in mouse
brain in an Ab-dependent mechanism (Wang et al.,
2016b). Interestingly, another group also demonstrated
that PGI2 ameliorated the exacerbating effect of PGE2

on cognitive disorder in APPS/PS1 mice (Zheng et al.,
2017). Overall, the studies investigating the role of IP
and EP receptors in AD are mostly restricted to animal
models, thus further studies are warranted to examine
whether and how PGI2 and PGE2 are involved in the
development and/or treatment of AD in humans.
2. Parkinson Disease. PD is characterized by a pro-

gressive loss of dopaminergic neurons in the substantia
nigra. This complex and multifactorial disease could be
explained by several molecular and cellular mecha-
nisms, including neuroinflammation and microglial
dysfunctions. The levels of PGE2 were reported to be
significantly elevated in the substantia nigra and other
areas of PD patients’ brains (Mattammal et al., 1995).
EP1 receptor has been suggested to mediate PGE2-

induced neurotoxicity in rat dopaminergic neurons
isolated from substantia nigra: EP1-receptor agonist
17-phenyl trinor PGE2 induced toxic effects on dopami-
nergic neurons along with PGE2, and 16-phenyl tetra-
nor PGE2 (stable analog of PGE2) induced toxic effects
on dopaminergic neurons, whereas EP2-receptor ago-
nist butaprost and the (EP3 . EP1) receptor agonist
sulprostone failed to exert any toxic actions (Carrasco
et al., 2007). In rat microglia, an EP2-receptor signaling
was reported to activatemicroglial functions in a cAMP-
dependent manner, and thus, EP2 pathway appears to
aggravate neuroinflammation. Indeed, EP2-receptor
agonist, butaprost, as well as PGE2 stimulated cAMP
production in microglial cells, whereas EP1-receptor
agonist, 17-phenyl trinor PGE2, and EP4-receptor ago-
nist, CAY10598, failed to elicit such actions. It is
interesting that EP2-receptor activation exacerbated
the rapid upregulation of mRNAs of proinflammatory
genes, such as COX-2, IL-6, and iNOS (Quan et al.,
2013). Kang et al. (2017) also found that COX-2–PGE2-
EP2-cAMP axis is involved in oxidopamine-induced
neurotoxic effects in Neuro-2a (mouse neuroblastoma)
and SH-SY5Y (originated from human bone marrow of
a 4-year-old patient with neuroblastoma) cell lines, both

of which mainly consist of dopaminergic neurons.
Moreover, Johansson et al. (2013) demonstrated in an
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–induced
PD model that microglia-specific EP2 deficiency attenu-
ates disease-induced microglial activation and prevents
a loss in dopaminergic neurons in substantia nigra. In
contrast to such an in vivo study, in rat primary in vitro
midbrain cultured cells, anEP2-receptor pathway appears
to exhibit a neuroprotective effect on dopaminergic neu-
rons (Carrasco et al., 2008).

Although EP4 receptor is coupled to cAMP stimula-
tion like EP2, the EP4-receptor pathway substantially
works in a neuroprotective direction: in mouse in vivo
model of PD, microglia-specific EP4 deficiency exacer-
bated microglial activation and T-cell infiltration in
substantia nigra, and systemic administration of an
EP4 agonist prevented a loss of dopaminergic neurons
(Pradhan et al., 2017).

The exact role of PGI2 in PD remains to be determined.
However, it was reported that enforced PGI2 synthesis by
adenoviral gene transfer into substantia nigra prevents
loss of dopaminergic neurons in oxidopamine-induced PD
model. Based on this report, PGI2 has a potential to exert
a neuroprotective action in PD (Tsai et al., 2013). Further
studies on the role of EP and IP receptor in patients with
PD are necessary.

3. Huntington Disease. Huntington Disease (HD) is
a neuropathology in which a genetic mutation can cause
a large spectrum of symptoms, such as chorea and other
motor disorders, but also cognitive disorders caused by an
atrophy in basal ganglia (Anglada-Huguet et al., 2014).

In addition to the genetic etiology, the role of in-
flammation has been also described in the progression
of HD. In fact, EP1-receptor antagonist, SC51089, has
been shown to slow down the motor disorders and to
ameliorate long-term memory decline in a mouse model
of HD. Thus, the antagonism of EP1 receptor appears to
improve many disorders in HD (Anglada-Huguet et al.,
2014).

Another study from the same group demonstrated
that an EP2/EP3/EP4 agonist, misoprostol, can also
reduce memory decline in mouse model of HD. Authors
concluded that among EP receptors, EP2 receptor
promotes synaptic plasticity and delays neurodegener-
ation by stimulating the brain-derived neurotrophic
factor expression (Anglada-Huguet et al., 2016). Despite
these recent works, the impact and roles of IP/EP
receptors in the pathophysiology of HD remain to be
elucidated in humans also.

4. Multiple Sclerosis in Central Nervous System.
MS is a chronic demyelinating disease of the CNS that
leads to permanent cognitive and motor disabilities.
MS is characterized by inflammation, oligodendrocyte
loss, and axonal pathology. It was reported that both
PGE2 levels in CSF and COX-2 expression levels in
demyelinating plaques are increased in MS patients,
suggesting that COX-2–PGE2 axis is involved in
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neuroinflammation (Mattsson et al., 2009; Palumbo
et al., 2012). In addition, Kihara et al. (2009) demon-
strated by using lipidomics that the main products of
eicosanoid synthesis pathway in spinal cord are shifted
from PGD2 into PGE2 in association with the onset of
mouseMSmodel. In addition, they found that mPGES-
1 deficiency can attenuate the symptoms of the disease,
and there is a positive correlation between mPGES-1
immunoreactivity in microglia/macrophages and the
severity of MS disease, indicating that mPGES-1-
PGE2 pathway plays a role in the progression of MS
(Kihara et al., 2009). Kihara et al. (2009) proposed that
at least EP1/EP2/EP4 receptors may participate in the
PGE2-elicited MS pathogenesis in various cell types,
and the suppression of mPGES-1 activity by specific
inhibitor may be a potential treatment against MS in
humans.
In another mouse model of MS (induced by cupri-

zone), COX-2–PGE2-EP2 axis has been proposed to play
an important role by aggravating oligodendrocyte apo-
ptosis during the onset of MS: AH6809 (EP1/2 and DP1
antagonist), reduced cuprizone-induced oligodendro-
cyte apoptosis, demyelination, neuroinflammation,
and motor deficits. Indeed, the gene expression levels
of EP receptors, including EP2, in brain were upregu-
lated in the progressive stage of MS (after 5 weeks of
cuprizone treatment) (Palumbo et al., 2012). In this MS
model, PGI2 level in the CSF is likely to be unchanged
upon cuprizone administration (Palumbo et al., 2012).
Interestingly, it was reported in mouse model of MS
that a stable IP agonist, iloprost, suppresses demyelin-
ation and motor dysfunction, indicating that an IP-
receptor agonist has a potential to prevent (or alleviate)
symptoms of MS (Muramatsu et al., 2015). However,
there are no data available on the role of IP receptor in
humans with MS.
5. Amyotrophic Lateral Sclerosis. Amyotrophic lat-

eral sclerosis (ALS) is a progressive neurodegenerative
disease primarily involving motor neurons and charac-
terized by several molecular and cellular dysfunctions,
including oxidative stress, apoptosis, neuroinflamma-
tion, and glutamate toxicity. This disease has been
shown to be closely associated with upregulation of
proinflammatory pathway; PGE2 levels in CSF, brain,
and plasma were all increased in ALS patients (Almer
et al., 2002; Iłzecka, 2003).
EP2 receptor has been shown to participate in neuro-

inflammation and progression of ALS inmousemodel of
familial ALS containing G93A-mutation in superoxide
dismutase gene. The EP2-receptor deficiency improves
motor strength and extends survival in association with
systemic reductions in the levels of proinflammatory
effectors, such as iNOS and NADPH oxidase, suggest-
ing that suppression of EP2-receptor signaling may be
a novel strategy for the treatment of ALS (Liang et al.,
2008). It should be noted that the EP2-receptor

signaling can induce the motor-neuron–like cell death
in an in vitro system (Miyagishi et al., 2013).

The mRNA expression levels of alternatively spliced
isoforms of EP3 receptor were characterized during the
pathogenesis of ALS; EP3a and EP3g mRNAs were
detected in theWT lumbar spinal cord, but EP3bmRNA
was undetectable. When the authors analyzed motor
neurons dissected out of spinal cord, EP3g mRNA was
predominantly detected in motor neurons, whereas
EP3a and EP3b mRNAs were undetectable. Such an
EP3g-biased expression in motor neurons was un-
changed in ALS-model (G93A-mutated in superoxide
dismutase gene) mice (Kosuge et al., 2015).

Bilak et al. (2004) reported that the EP2-receptor
agonist butaprost as well as the EP3 . EP1 agonist
sulprostone exerted a neuroprotective effect on motor
neurons in slice culture model of ALS. It remains to be
elucidated why Gs-coupled EP2 and Gi-coupled EP3
pathways share similar protective actions in chronic
glutamate–induced ALS model.

Interestingly, it was reported that administration
of the IP-receptor agonist, ONO-1301-MS, to ALS-
model mice attenuates the expression of hypoxia-
inducible factor 1a, which is a hypoxia marker known
to be elevated in the spinal cord of mouse model of
ALS and ALS patients (Tada et al., 2019). There has
been no study yet on the role of PGI2 in humans with
ALS. Moreover, although PGE2 levels have been
shown to increase in patients with ALS, further
studies are necessary to confirm the contribution of
each EP-receptor subtype in these patients.

B. Peripheral Nervous System

1. Prostaglandin E2 and Prostacyclin Receptors in
Peripheral Nervous System/Dorsal Root Ganglion
Neurons. Aspirin and otherNSAIDsareused for several
pharmaceutical actions, especially as analgesics. Inflam-
mation, caused by injury or other reasons, could be then
perceived by the brain and all other systems as a signal
of danger and/or attention through pain. PGE2, through
its EP1–4 receptors, and PGI2, through its IP receptor,
are considered to be pain mediators.

Dorsal root ganglion (DRG) neurons play an impor-
tant role in the pain perception (i.e., nociception) and
pain transmission. IP, EP1, EP3, and EP4 receptors
were detected in DRG neurons of mice with in situ
hybridization studies (Sugimoto et al., 1994; Oida et al.,
1995). Another study also demonstrated that EP1, EP2,
and EP4 receptors and only EP3g isoform (but not EP3a
or EP3b) were expressed in rat dissociated sensoryDRG
neurons with PCR detection (Southall and Vasko,
2001).

Several pharmacological studies focused on the roles of
EP and IP receptors in DRG neurons, indicating that
only IP and EP4 receptors are involved in cAMP
production. An IP-receptor agonist, cicaprost, and
EP4-receptor agonist, ONO-AE1-329, increased cAMP
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levels in rat DRG neurons in a concentration-dependent
manner. On the other hand, ONO-DI-004 (EP1-receptor
agonist), ONO-AE1-259 (EP2 agonist), sulprostone
(EP3. EP1 agonist), and ONO-AE-248 (EP3 agonist)
were unable to alter cAMP levels, suggesting that
PGE2-induced cAMP production appears to be medi-
ated by EP4 receptor without being affected by EP3
receptors (Wise, 2006).
2. Roles of Prostaglandin E2 Receptor 3 in Pain

Perception. Several studies have been performed to
clarify the role of EP3 receptor in pain perception.
Pharmacological stimulation with the EP3-receptor
agonist, ONO-AE-248, resulted in antinociceptive effect
in ratmodels of joint inflammation (Natura et al., 2013).
Another study demonstrated in a mechanical nerve
ligation-induced neuropathic pain model that among
the four EP receptors, only EP3 deficiency attenuated
nociceptive behavior and mechanical allodynia. Re-
cently, EP3-induced CCL2 chemokine release has been
proposed as a possible mechanism underlying EP3-
induced neuropathic pain (Treutlein et al., 2018). Thus,
EP3-receptor antagonist could be a therapeutic target
to reduce chronic neuropathic pain, and studies per-
formed in humans with neuropathic pain are necessary.
3. Roles of Prostaglandin E2 Receptor 1, Prostaglandin

E2 Receptor 2, Prostaglandin E2 Receptor 4, and Prostacy-
clin Receptor in Pain Perception. Apparently, EP1
receptor is involved in pain perception through its
major role in peripheral nervous system (PNS) but
not in CNS. The studies using EP1 knockout mice
revealed thatEP1 receptor is implicated in the perception
of inflammation induced-heat/pain sensitization in PNS
(Johansson et al., 2011). Moriyama et al. (2005) demon-
strated that EP1 deficiency attenuates the activation
efficiency of TRPV1, a nonselective cation channel, which
is expressed in sensory neurons and activated by various
noxious stimuli, such as heat, proton, and pepper constit-
uent. Moreover, EP1-receptor antagonist, ONO-8713,
mimicked the effect of EP1 deficiency, whereas an EP1-
receptor agonist, ONO-DI-004, exacerbated capsaicin-
induced TRPV1 activation in mice DRG neurons. The
mechanisms underlying PGE2-induced TRPV1 potentia-
tion are likely different between human and mouse DRG
neurons. PGE2-induced TRPV1 potentiation was sup-
pressed by the activation of metabotropic glutamate
receptors 2 and 3 in mouse but not human DRG neurons
(Sheahan et al., 2018). The inhibition of pain perception
by selective EP1 antagonist remains to be confirmed in
human models.
Inflammatory pain occurs in endometriosis. In a pre-

clinical mousemodel of endometriosis, EP2 receptor has
been shown to mediate peripheral and central hyper-
algesia. Real-time PCR studies demonstrated that the
expression level of EP2/EP4 receptors and also COX-2
were significantly increased in endometriosis lesions
compared with controls. An EP2-receptor antagonist,
PF-04418948, was the most efficiently analgesic rather

than EP4- or TRPV1- antagonist, since this drug showed
suppressive effects on both peripheral and central hyper-
algesia (Greaves et al., 2017). Using an chimeric endo-
metriosis model in which human endometriotic cells
were xenografted into nude mice, Arosh et al. (2015)
demonstrated that selective inhibition of both EP2 and
EP4 receptors suppresses proinflammatory state of DRG
neurons and attenuates pelvic pain in endometriosis. Lin
et al. (2006) reported that EP4 receptor plays pivotal
roles in nociception and promotes inflammatory pain
hypersensitivity, at least in mouse model. Indeed, they
found that EP4-receptor expression is increased both in
mRNA and protein levels in DRG neurons upon periph-
eral inflammation (and EP1-3 expression levels are
unchanged) (Lin et al., 2006). The use of EP4-receptor
antagonists, such as MF498 or AH23848, was associated
with pain reduction, and hence, these drugs had
analgesic effects in murine inflammation models
(Lin et al., 2006; Clark et al., 2008). These analgesic
actions of EP4-receptor antagonists have already
been verified in humans (Jin et al., 2018), and these
drugs may serve for the treatment of pain-associated
inflammatory diseases, such as rheumatic disease or
osteoarthritis. Indeed, Grapiprant, an EP4 antago-
nist, is already approved for the treatment of pain
and inflammation in osteoarthritis in dogs (Rausch-
Derra et al., 2016).

The IP receptor is highly involved in nociception,
hyperalgesia, and inflammation. The effect of IP-
receptor activation on the sensitization of rat sensory
neurons is mediated by stimulation of adenylyl cyclase
and phospholipase C in sensory neurons (Smith et al.,
1998). Furthermore, the involvement of IP receptors in
inflammatory pain was addressed by using IP-receptor
knockout mice and acetic acid–induced writhing test
(Murata et al., 1997; Bley et al., 1998). The observed
effect was also confirmed by using two selective IP
antagonists, RO1138452 (CAY10441) and RO3244794
(Bley et al., 2006). These antagonists were tested in
a rat model of nociception; both antagonists inhibited
carrageenan-induced mechanical hyperalgesia and
edema formation (Bley et al., 2006). Furthermore, in
a rat model of neuropathic pain, a stable PGI2 analog
(carbaprostacyclin) increased the neuronal activities
in DRG and dorsal horn in a dose-dependent manner
(Omana-Zapata and Bley, 2001).

The inhibition of PGI2-IP pathway in rodent models
of hyperalgesia and chronic arthritis showed a signif-
icant reduction of pain and associated inflammation.
In this study, the injection of a prostacyclin analog,
beraprost (IP . EP3/TP agonist), dose-dependently
induced hyperalgesia, and such an effect was abol-
ished by the simultaneous administration of IP-receptor
antagonist (N-[4-(imidazo- lidin-2-ylideneamino)-benzyl]-4-
methoxy-benzamide) (Pulichino et al., 2006). In contrast,
a 7-day clinical use of another prostacyclin analog,
iloprost (IP = EP1 . EP3 agonist), in rheumatoid
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arthritis patients demonstrated that iloprost has anti-
inflammatory and analgesic properties (Gao et al., 2002).
Another study reported on the analgesic effect of iloprost
being similar to the use of tramadol, a powerful analgesic,
in a clinical trial for patients with arthritis (Mayerhoefer
et al., 2007). Such different efficacies of beraprost and
iloprost could be explained by species difference and/
or the different specificity profiles between iloprost
(IP = EP1.EP3) and beraprost (IP.EP3/TP) (Whittle
et al., 2012; Alexander et al., 2019).
In patients with pulmonary hypertension, so far all

IP-receptor agonists produce adverse events related
to pain, including site pain, jaw pain, flushing,
headache, and extremity pain, suggesting a key role
of the IP receptor in mediating pain (Picken et al.,
2019). Given that the highest odds ratio for jaw pain
from meta-analysis was seen with beraprost (Picken
et al., 2019), this might indicate involvement of EP3 in
the joint pain. Transitioning from epoprostenol (syn-
thetic PGI2) to subcutaneous treprostinil increases
site pain (Rubenfire et al., 2007), again suggesting
additional receptors contributing—probably EP2 and
DP1 because they are both expressed in the skin, and
EP2 is expressed in the dorsal horn—which receive
sensory information from primary afferents. One of
themechanismsunderlyingPGI2-elicited painmodulation
is explained by the potentiation of the TRPV1 receptor in
mouse DRG neurons (Moriyama et al., 2005). Alterna-
tively, as suggested for the role of PGE2, PGI2-IP signaling
is also likely to sensitize glutamate pathway by inducing
phosphorylation and translocation of GluR1 receptor in
mouse DRG neurons in zymosan-induced mechanical
hyperalgesia model (Schuh et al., 2014).

VI. Respiratory System

Endogenous PGE2, secreted by epithelial cells, endo-
thelial cells, SMCs, macrophages, and fibroblasts, exerts
complex effects on resident and infiltrating lung cell types.
The predominant effects of PGE2 on the lung, as opposed
tomany other tissues/organs, are considered to be anti-
inflammatory and protective (Vancheri et al., 2004;
Safholm et al., 2015). Nevertheless, the use of exoge-
nous PGE2 as a pharmacological/therapeutic tool in
patients with lung diseases is limited because of the
multiplicity of EP receptors types with receptor-specific
effects that can be both beneficial or detrimental in
patients. For instance, in asthma, the effects of PGE2 or
different EP receptors agonists can have beneficial effects
on bronchial SMC, such as inhibition of proliferation
through EP2 and EP4 receptors (Zaslona and Peters-
Golden, 2015) and relaxation via EP2 in mice and EP4 in
humans (Buckley et al., 2011; Benyahia et al., 2012).
PGE2 could also have a detrimental effect by promoting
cough through the EP3 receptor (Maher et al., 2009).
Because clinical pharmacology/therapeutic interven-

tions require both a reductionist and an integrated

approach, we present the effects of PGE2 and the
involvement of different EP-receptor types in the lung
at three levels of integration: 1) cell types/tissue; 2)
pathophysiologic processes that are common to many
lung diseases [e.g., contraction or proliferation of SMC;
pulmonary vascular remodeling (Lundequist et al., 2010)];
and 3) specific diseases (e.g., asthma, COPD, pulmonary
fibrosis, etc.).

A. Bronchial Smooth Muscle Cells

The effects of PGE2 on human bronchial SMC are
well documented and globally considered as being
“bronchoprotective.” Bronchoprotection is explained
by several direct and indirect mechanisms. Low (,1
mM) concentrations of PGE2 attenuated histamine- or
anti-IgE–induced contraction in small (,1 mm in
diameter) and larger human bronchi ex vivo through
an EP4 receptor–dependent effect (Buckley et al.,
2011; Benyahia et al., 2012; Safholm et al., 2015;
Ozen et al., 2020b). This EP4 receptor–mediated
relaxation was related to a direct effect on the human
bronchial SMC. Interestingly, in mice, relaxation of
bronchial SMC was mediated by activation of EP2
receptors (Sheller et al., 2000), whereas in humans, it
was mediated via the EP4 receptor (Benyahia et al.,
2012), although EP2 receptors were reported to inhibit
mast cell–induced bronchoconstriction (Safholm et al.,
2015). Cooperativity between EP2 and EP4 receptors
on human bronchial SMC growth inhibition has been
demonstrated (Michael et al., 2019). Higher concentra-
tions of PGE2 (10–100 mM) contracted human bronchi
preparations by activating TP receptors (Safholm et al.,
2015). On the other hand, PGI2 and its analogs (iloprost,
treprostinil) induced potent bronchodilation ex vivo in
bronchial preparations derived from either pathologic
(PH, COPD, lung fibrosis, emphysema) or nonpatho-
logic (Haye-Legrand et al., 1987; Norel et al., 1999; Ozen
et al., 2020b) human lung specimens. In a similar way,
in a rat model of PH, iloprost treatment was effective at
reducing bronchial hyper-reactivity induced by meth-
acholine (Habre et al., 2011). Although the majority of
effects of PGI2 analogs on bronchial muscle tone have
been attributed to the IP receptor, EP4 and DP1
receptors may also contribute to the actions of trepros-
tinil, particularly at higher analog concentrations (Ozen
et al., 2020b).

Indirect effects that explain PGE2-related “bronchopro-
tection” aremediated by: 1) activation of the EP2 receptors
onmastocytes, which inhibits the IgE-triggeredmediators
release from mastocytes (Safholm et al., 2015); 2) in-
hibition of allergen-stimulated PGD2 release (Hartert
et al., 2000); and 3) inhibition of eosinophil responses
(e.g., chemotaxis and degranulation), effects that are
mediated by both EP2 and EP4 receptors (Peinhaupt
et al., 2017). In addition, the PGE2-mediated activation
of the EP4 receptors inhibited the interaction (adhesion
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and transmigration) of eosinophils with endothelial cells
(Peinhaupt et al., 2017).
Globally, in asthma, the prevention of the early

airway response to allergen depends on bronchodilation
and inhibition of the release of mast-cell mediators,
such as histamine, leukotrienes, and PGD2 (Vancheri
et al., 2004); protection against allergen-induced air-
way hyper-responsiveness and late asthmatic reaction
(.24 hours) is secondary to the reduced recruitment
of inflammatory cells (Vancheri et al., 2004). Other
delayed, potentially protective effects of PGE2 on bron-
chial SMC are related to inhibition of migration medi-
ated through both EP2 and EP4 receptors (Lebender
et al., 2018). Another interesting protective effect of
PGE2 concerns aspirin-induced asthma characterized
by decreased PGE2 secretion by peripheral blood cells
and lung epithelial cells with resulting increased syn-
thesis of cysteinyl-leukotrienes and bronchoconstriction
(Vancheri et al., 2004). Inhaled PGE2 can decrease the
release of cysteinyl-leukotrienes from blood leukocytes
occurring after aspirin challenge in patients with
aspirin-induced asthma (Vancheri et al., 2004).

B. Effects of Prostaglandin E2 and Prostacyclin on
Lung Fibroblasts

In human or rodent lungs, the increased production of
cAMP after EP2-, EP4-, or IP-receptor activation are
known to induce antifibrotic signaling by decreasing
fibroblast proliferation, motility, and extracellular ma-
trix synthesis (Insel et al., 2012).
The IP receptor is expressed in primary human lung

fibroblasts from patients with and without idiopathic
pulmonary fibrosis. In a recent publication, it was shown
that ACT-333679 (MRE-269, a selective IP agonist)
exerts potent antifibrotic effects on primary human lung
fibroblasts by reducing Yes-associated protein/transcrip-
tional coactivator with PDZ-binding motif–dependent
profibrotic gene transcription (Zmajkovicova et al.,
2019). A similar protective effect was found in rats
submitted to inhalation of nanoparticle INS1009 contain-
ing treprostinil (IP agonist) prodrug (C16TR), which
inhibited bleomycin-induced pulmonary fibrosis (Corboz
et al., 2018). In other studies, iloprost and treprostinil
protected against bleomycin-induced pulmonary fibrosis
(Zhu et al., 2011; Nikitopoulou et al., 2019). In both
studies, mice treated with bleomycin+iloprost showed
a normal alveolar structure and reduced lung inflamma-
tion compared with those treated with bleomycin alone,
with lower proinflammatory cytokine (TNF-a, IL-6, TGF-
b1) concentrations in broncho-alveolar lavage reported in
the former study and reduced inflammatory cell infiltra-
tion in the latter.
PGE2 has a range of inhibitory effects on human

fibroblast function, including inhibition of chemotaxis,
TGF-b–induced transition of fibroblasts into myofibro-
blasts, collagen synthesis, and cell proliferation (Li
et al., 2011). In terms of the role of prostanoid receptors

involved, lung fibroblasts treated with EP1- and EP3-
receptor agonists showed enhanced chemotaxis (Li
et al., 2011). However, human lung fibroblasts treated
with the EP2-receptor agonists (ONO-AE1-259, butap-
rost) and the EP4-receptor agonist (ONO-AE1-329)
showed reduced cell migration (White et al., 2005; Li
et al., 2011) probably resulting from inhibition of
chemotaxis (Li et al., 2011). Additionally, human fetal
lung fibroblast treated concomitantly with AH6809
(EP1/2 and DP1 antagonist) and ONO-AE3-208 (EP4
antagonist) showed a reduced antifibrotic effect of PGE2

(Li et al., 2011), whereas the antifibrotic effects of PGE2

or the EP2-receptor agonist, butaprost, were absent in
mouse lung fibroblasts lacking the EP2 receptor (White
et al., 2005), confirming an important role for EP2
receptors in regulating fibroblast proliferation. How-
ever, some of the studies do not support the antifibrotic
role of EP4 receptor in human fibroblast (Kach et al.,
2014), or it was only detectable when both EP2 and EP4
antagonists were used together (Sieber et al., 2018).
Furthermore, neither the EP1-receptor antagonist
(ONO-8713) nor the EP3-receptor antagonist (ONO-
AE3-240) modified the antifibrotic effect of PGE2 in
human lung fibroblasts (Li et al., 2011).

PGE2 mainly promoted an antifibrotic phenotype
(inhibition of proliferation and of collagen synthesis;
reduced biosynthesis of extracellular matrix proteins)
in a Gs/AC/cAMP-dependent manner by activation of
EP2 in humans (Liu et al., 2004). This antifibrotic effect
of PGE2 mediated by the EP2 receptor was demon-
strated in a bleomycin-induced pulmonary fibrosis
mouse model (Wei et al., 2014). Indeed, the genetic
deletion of EP2 receptor resulted in an excessive fibrotic
response (Moore et al., 2005). A protective role of EP2-
receptor agonist (butaprost) against mice pulmonary
fibrosis was also demonstrated (Moore et al., 2005). It
should also be mentioned that some of the above effects
can be replicated by EP4 receptors since it was shown in
cardiac fibrosis (Lai et al., 2018; Lebender et al., 2018),
suggesting some overlapping function of EP2 and EP4
receptors in regulating fibroblast function. Indeed, in
a high-throughput screen to assess the therapeutic
potential of novel drugs in pulmonary fibrosis, drugs
acting at either the EP2 or EP4 receptor were identified
as among the most effective agents at inhibiting TGF-
b–induced myofibroblast differentiation via the
SMAD2/3 pathway (Sieber et al., 2018).

When epithelial damage occurs at the bronchial or
alveolar level, there is decreased PGE2 synthesis and
consequently a loss of their capacity to promote the
antifibrotic phenotype (Vancheri et al., 2004). The pro-
posed PGE2-mediated antifibrotic model (e.g., bronchial
tissue remodeling in asthma and pulmonary fibrosis) is
based on initial damage with activation of epithelial
cells with subsequent activation of inflammatory cells,
fibroblasts, endothelial cells, and SMCs. These cells
secrete cytokines, chemokines, and growth factors with
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the double aim of eliminating the “damaging” agent and
initiating adaptive tissue repair. Impairment of PGE2

production for reasons related to the host and/or to the
nature of the damaging agent might lead to persistent
inflammation and nonadaptive tissue repair processes
(fibrosis/adverse remodeling) (Vancheri et al., 2004).
EP2- and EP4-receptor agonists accelerate the senes-

cence of bronchial fibroblasts, and this could be relevant
to bronchial remodeling in COPD. Induced senescence
and inflammatory profile were reported in human and
mice lung fibroblasts in response to a single exposure
to PGE2. An induced production of senescence markers
(p21 and p53) and proinflammatory mediators (IL-6,
CX3CL1, fibroblast growth factor 2, vascular endothe-
lial growth factor, MMP-2) were observed in WT mice
fibroblasts but not in knockout mice for p53. Similarly,
in control and COPD fibroblasts, increased production
of senescence markers and inflammatory mediators were
induced by PGE2 exposure in vitro (Dagouassat et al.,
2013). This effect of PGE2 was mediated by EP2/EP4
receptors since it was mimicked by selective agonists
like ONO-AE1-259-01 (EP2 agonist) and CAY10598
(EP4 agonist). Indeed, in both COPD or control fibro-
blasts treated with EP2 and EP4 antagonists together
(AH6809 and GW627368X or PF-04418948 and L-
161,982), PGE2-induced senescence was significantly
reduced (Dagouassat et al., 2013). Moreover, EP2-
and, to a lesser extent, EP4-receptor expression was
found to be enhanced in lung fibroblasts derived from
patients with COPD (Dagouassat et al., 2013; Horikiri
et al., 2017), suggesting potential sensitization of these
two Gs-coupled receptors in airway remodeling.

C. Prostaglandin E2 and Prostacyclin in Lung Cancer

The link between cigarette smoking and lung cancer
is now well established, and COX-2–derived PGE2

has a well known role in cancer, stimulating tumor-
associated angiogenesis, cell invasiveness, and cell
proliferation as well as inhibiting apoptosis (Huang
and Chen, 2011). PGE2 and an EP4-receptor agonist,
PGE1-OH, are known to promote human A549 lung
cancer–cell migration (Kim et al., 2010; Hirata and
Narumiya, 2012).
Specific EP3- or EP4-receptor agonists (ONO-AE-248

and ONO-AE1-329) stimulated CXCL12 expression by
mice fibroblasts in vitro, whereas EP3- or EP4-receptor
deficiency reduced stromal expression of CXCL12/ C-X-
C motif chemokine receptor 4 in mice implanted with
Lewis lung carcinoma cells (Katoh et al., 2010). The EP2
receptor was found in human nonsmall cell lung carci-
noma cell lines (H1838, H2106) byWestern blot and real-
time PCR and is also responsible for lung tumorigenesis
(Han and Roman, 2004). In these cell lines, treatment
with EP2 agonists [butaprost, 16,16-dimethyl-PGE2

(EP3 . EP2/EP4 agonist)] enhanced cell prolifera-
tion. Additionally, treating these cells with PPAR-g
ligands for 24 hours had an inhibitory effect on

EP2-receptor expression (Han and Roman, 2004).
Similarly, a protumorigenic effect of PGE2 was also
mediated by EP2 receptor in mice since EP2 receptor-
depleted mice were protected against lung tumorigen-
esis (Keith et al., 2006). After 20 weeks of exposure to
butylated hydroxytoluene (a tobacco carcinogen) and to
3-methylcholanthrene (a food additive), knockout mice
for EP2 receptor presented fewer lung tumors compared
with wild-type mice. However, the proinflammatory
role of PGE2 was maintained even in absence of EP2
(Keith et al., 2006).

In contrast to EP2 agonists, IP agonists like iloprost
were shown to inhibit human nonsmall cell lung cancer
growth (Tennis et al., 2010). Likewise, administration
of a PGI2 analog, beraprost, reduced tumor metastasis
in a mouse lung metastasis model using Lewis lung
carcinoma cells (Minami et al., 2015). This contrasts
with another study, which showed that a second-
generation PGI2 analog, treprostinil, which has potent
IP and EP2 affinity, failed to prevent tumors in amouse
lung adenocarcinoma model using JF32 cells (Dwyer-
Nield et al., 2017). Despite this, and the known role of
EP2 receptor in lung cancer through its activation of the
epidermal growth factor (Huang and Chen, 2011), there
is no evidence so far that this analog increases the
incidence of cancer, including in the lung. This may
result from treprostinil’s known activation of PPARs
and their generally antitumor effects (Clapp and
Gurung, 2015).

Lung cancer induced by tobacco carcinogens could be
inhibited by PGI2 in both human and mice models. In
human bronchial epithelial cells (HBECs) exposed to
cigarette smoke condensate (CSC), the COX-2 expres-
sion and PGI2 synthesis are increased after 4 weeks of
exposure, whereas [PPAR-g, 15-PGDH, and carboxyles-
terase 1 (CES1)] mRNA expressions are downregulated
after 16 weeks of exposure. The treatment with iloprost
of these HBECs already exposed to CSC for 4 weeks
reversed the effect of CSC on PPAR-g and CES1
expression (New et al., 2018). Similarly, mice receiving
urethane (tobacco carcinogen) during 20 weeks devel-
oped multiple adenomas, and the same gene (PPAR-g,
15-PGDH, and CES1) expressions were downregulated
while COX-2 expression increased (New et al., 2018). In
this study, when transgenic mice for PGIS were used,
they were protected against cancer by high levels of
produced PGI2. However, the authors assume that PGI2/
iloprost effects in HBEC or mice are PPAR-g mediated,
and the IP-receptor role remains to be explored.

VII. Upper and Lower Urinary Tract

Prostanoids participate in controlling the relaxation
and contraction of urinary bladder and urethra, thus
affecting voiding andmicturition, respectively (Andersson
et al., 2018). They also play an important role in various
parts of the kidney and ureters, thus controlling salt and
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water retention as well as renin secretion in human and
experimental animals (Grantham and Orloff, 1968;
Sonnenburg and Smith, 1988; Hao and Breyer, 2008).

A. Urinary Bladder

Biopsies of human urinary bladder mucosa were
shown to release eicosanoids in the following order:
PGI2, PGE2, prostaglandin F2 a (PGF2a), and TxA2. The
amounts of eicosanoids released were similar to those
reported for the rat urinary bladder (Jeremy et al.,
1987b). EP1 receptor is gaining much importance
being involved in initiation of the micturition reflex
(Lee et al., 2007). However, blocking EP1 receptor
(using PF2907617) caused a rightward shift of the
PGE2 concentration-response curve in the rat bladder
but not in the human one, and the same was observed
using CJ24979, a selective EP3-receptor antagonist. It
seems that although PGE2 is of equal importance in
both human and rat bladder, difference in receptors
that mediate its effects may exist. In a monkey model,
the dual EP2/EP3 agonist ONO-8055 dose-dependently
improved voiding dysfunction of underactive bladder
(Kinoshita et al., 2018).
Recent reports show that PGE2 is involved in the

development of bladder overactivity in both human
(Rahnama’i et al., 2013) and rats (Wada et al., 2018).
Moreover, increased PGE2 production and mRNA ex-
pression of EP1 and EP2 receptors were observed in the
bladder of patients with interstitial cystitis (Wada
et al., 2015). The same was reported in an equivalent
rat model (Zhang et al., 2016b). Deficiency in PGI2
production was also implicated in the development of
idiopathic primary detrusor instability in human
(Bergman et al., 1991). Consistent with this finding,
PGI2 was proven to facilitate the micturition reflex in
rats (Cefalu et al., 2007). Elevated PGE2 levels were
observed in bladder carcinogenesis in human and
rats, respectively (Eschwège et al., 2003; Shi et al.,
2006). In invasive bladder cancer in mice, mRNA
levels for EP2 and EP4 receptors were increased by
2–3-fold after 4–8 weeks from administration of
N-butyl-N-(4-hydroxybutyl)-nitrosamine, a carcino-
gen inducing bladder cancer. In addition, expression
of COX-2 was also upregulated by 3–4-fold while
expression of 15-PGDH was downregulated by 50%–

80% (Taylor et al., 2009). In human, inhibition of
PGE2 formation plays amajor role in tumor escape from
immune system during bladder cancer progression, as
reported by Prima et al. (2017). Moreover, a clinical
study favored EP1-receptor antagonist ONO-8539 as
a potential treatment of non-neurogenic overactive
bladder syndrome (Chapple et al., 2014).

B. Urethra

As for the urethra, it is established that PGE2 relaxes
contracted urethral muscles, which seems complemen-
tary for bladder emptying. This effect has been proven

in humans (Klarskov et al., 1983) as well as in guinea
pigs (Finkbeiner and Bissada, 1981), in which the effect
of PGE2was completely blocked bySC19220, a supposed
EP1 antagonist (Finkbeiner and Bissada, 1981). No
data are reported in other rodents.

C. Kidney

Literature highlights PGE2 and PGI2 as the twomain
prostanoids of functional importance in kidney. Rat
glomeruli in the cortex produce mainly PGE2 and less
PGI2, but human glomeruli synthesize mainly PGI2 and
some PGE2 (Schlondorff, 1986; Bonvalet et al., 1987).
Colocalization of mPGES-1, whose deletion affects
PGE2 levels in urine (Li et al., 2017d), and COX-2 in
rat cortical thick ascending limb and medullary in-
terstitial cells suggests that mPGES1 is functionally
coupled to COX-2. In the collecting ducts, on the other
hand, mPGES-1 is coupled to COX-1 (Hao and Breyer,
2008). This data has been confirmed in rodents but not
in humans. This necessitates further studies to explore
the relationship between selective COX inhibition and
PGE2 production in the collecting ducts, which greatly
control water permeability. On the other hand, abun-
dant expression of PGIS was observed in the nephro-
genic cortex in humans, and in situ hybridization
revealed an identical pattern inmice (Klein et al., 2015).

The EP and IP receptors have all been detected in the
kidney and in renal vessels, and their species-dependent
vascular presence and roles are discussed above in the
sections III. A. 1. Vascular Tone Regulation and III. B. 1.
Hypertension. Most of these receptors are associated with
specific renal functions (Hao and Breyer, 2008); however,
very few studies found EP2-receptor expression in (non-
vascular) kidney except one work with RT-PCR in rat
(Jensen et al., 2001). EP1-receptor mRNA expression
appears to be restricted to the collecting duct in both
mouse and human (Guan et al., 1998). EP3-receptor
mRNA are strongly expressed in human thick ascending
limb and in outer and cortical collecting ducts (Breyer
et al., 1996; Hao and Breyer, 2008). However, no change
was detected in urine osmolality and volume in EP3
knockoutmice (Fleming et al., 1998); these results suggest
that EP3 receptors could have different roles in human
andmouse kidneys. Further investigations should explore
this discrepancy. Photomicrographs of EP4-receptor
mRNA and protein were observed in human glomeruli
(Breyer et al., 1996; Hao and Breyer, 2008; Thieme
et al., 2017). EP4 receptors were more abundant in
rodents and were found in glomeruli, distal convo-
luted tubule, and cortical collecting duct (Jensen
et al., 2001; Thieme et al., 2017). IP receptors in
human and rodents were localized by different techni-
ques (Western blot and mRNA in situ hybridization) in
glomeruli (cortex), the medulla, distal tubules, and
collecting ducts (nephron-collecting ducts where they
are coupled to inhibition of cAMP production) (Kömhoff
et al., 1998; Nasrallah et al., 2001).
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When PGI2 release is genetically abrogated, mice
become hypertensive and show fibrosis and vascular
remodeling in the kidney (Yokoyama et al., 2002). In an
attempt to sustain renal blood flow and thereby prevent
hypoxic damage to the tubulointerstitium, the orally
active prostacyclin analog beraprost was tested in
patients with chronic kidney disease and showed some
positive effects regarding the decline of kidney function
(Koyama et al., 2015). Similarly, iloprost prevented
contrast media–induced nephropathy in patients with
renal dysfunction undergoing coronary angiography or
intervention (Spargias et al., 2009).
An EP4 receptor–derived peptide, which acts as

a negative allosteric modulator, restored renal function
in models of acute renal failure (Leduc et al., 2013), and
EP4 antagonists prevented inflammation and renal
impairment in a mouse model of acute glomerulone-
phritis (Aringer et al., 2018).
1. Water and Salt Regulation. It is well known that

PGE2 is the most important prostanoid in regulating
water and solutes balance. Although COX-1 is consti-
tutively expressed in the kidney, mice deficient in COX-
1 appear to be healthy with no obvious renal defects. In
contrast, COX-2 seems to play a more important role
in regulating renal water transport (Li et al., 2017d). In
rats, the EP3 receptor is reported to regulate water
excretion in response to high salt intake; it decreases
collecting duct-water permeability and increases wa-
ter excretion. High-salt treatment increased COX-
2–dependent PGE2 production when the EP3 receptor
was blocked by L-798106 in the thick ascending limb,
whereas urine output was decreased when the EP3
receptor was activated by sulprostone (EP3 . EP1
agonist) (Hao et al., 2016). EP2 and EP4 receptors are
reported to bypass vasopressin signaling and increase
water reabsorption (Olesen and Fenton, 2013). In
rodents, it was also shown that PGE2 inhibits AC and
NaCl reabsorption in thick ascending loop of Henle
(Schlondorff and Ardaillou, 1986). By radioligand mem-
brane binding and autoradiography, the localization of
[3H]PGE2 was demonstrated in proximal tubule as well
as the glomeruli of human kidney, a distribution that is
in accordancewith the assumed site of action for the salt
and water regulatory function of PGE2 (Eriksson et al.,
1990). However, mechanistic studies have been con-
fined to animal experiments, and these findings need to
be examined in humans.
2. Renin Release. PGE2 and PGI2 stimulate renin

secretion and renin gene expression by activating cAMP
formation in human juxtaglomerular cells (Wagner
et al., 1998) probably through activation of the EP4
receptor (Kaminska et al., 2014). The same mechanism
was demonstrated in mice (Jensen et al., 1996; Wang
et al., 2016a).
According to Hao and Breyer (2007), in nephrotic

syndrome, maintenance of normal renal function
in human becomes dependent on COX-2–derived

prostanoids, particularly PGE2 and PGI2, with an
active participation of EP4, EP2, and IP receptors
that mediate their vasodilator effect. In an equiva-
lent rat model, a selective EP4 antagonist (L-
161982) exacerbated proteinuria and glomerular
cell apoptosis (Aoudjit et al., 2006). More specifically,
and in diabetic nephropathy, the involvement of EP1
(Kennedy et al., 2007) and EP3 receptors (Hassouneh
et al., 2016) in mediating disease progression has
demonstrated that arginine vasopressin–mediated wa-
ter reabsorption was reduced in sulprostone-treated or
EP1

2/2 rats. These pathophysiologic effects were not
proven in human. On the other hand, elevation of COX-
2 and PGE2 expression is the main feature of renal cell
carcinoma in both human (Kaminska et al., 2014) and
rat (Rehman et al., 2013).

D. Ureters

The EP1 receptor, rather than EP2–4, was highly
expressed in human ureters (Oll et al., 2012). PGE2

increases contractility in obstructed human ureters and
relaxes nonobstructed ureters (Lowry et al., 2005). The
expression of EP2 and EP4 receptors as well as
contracting TP and EP1 receptors were reported in rat
ureters (Nørregaard et al., 2006).

VIII. Reproductive System

Prostanoids affect the contractility of different genital
tract organs, including prostate, testicular capsule,
epididymis, vas deferens, and corpus cavernosum in
males as well as uterus and ovary in females. These
lipids also influence the transportation of spermatozoa
and the ovulation process, suggesting that they may
have important roles in both male and female repro-
ductive functions (Hafs et al., 1974).

A. Vas Deferens

Aprevious study suggested that intrinsic PG contents
in rat and mouse vas deferens are higher than the other
reproductive tissues and may partially regulate sperm
transportation (Badr et al., 1975). In mouse vas defer-
ens, the epithelium is the most likely site for PG
production (Marshburn et al., 1989). However, in
human, only a small part of the seminal PGs might
originate from human vas deferens, whereas the sem-
inal glands are likely to be a main source of the PGs in
human semen (Gerozissis et al., 1982). PGs affect the
maturation and function of human sperm. For instance,
PGE2 is suggested to stimulate the motility of human
sperm (Didolkar and Roychowdhury, 1980). It has also
been reported that sperm function is improved when
human spermatozoa are incubated with low physiologic
level of PGE2 (Rios et al., 2016). These reports with
different levels of PGs production between human and
rodent vas deferens require further investigations.
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The rat vas deferens releases predominantly PGE2

and PGF2a under basal conditions in vitro. Indeed,
incubation of this tissue with AA results in an increase
in PGE2 production (Gerozissis and Dray, 1983). In
contrast, the human vas deferens synthesizes PGs only
when AA is supplied exogenously (Patra et al., 1990).
Interestingly, iloprost did not show any effects on
adrenergic neurotransmission in human vas deferens,
suggesting less contribution of PGI2 to this system
(Holmquist et al., 1991).
There is no sufficient data showing the PG receptors

expressed in vas deferens. However, based on the
previous reports, PGE2 released from the epithelium
of rat vas deferens upon ATP stimulation might act on
smoothmuscle, possibly via EP2/EP4 receptors, and the
cAMP-dependent pathway leading to the activation of
K+ channels, membrane hyperpolarization, and hence
the inhibition of smoothmuscle contraction (Ruan et al.,
2008).
Although PGs are not sufficiently synthesized under

basal conditions, these lipids may affect contractility of
human vas deferens. In isolated human vas deferens,
both PGE1 and PGE2 inhibited adrenergic responses by
a prejunctional mechanism that involves the activation
of large-conductance Ca2+-activated K+ channels and
Na+/K+-ATPase (Medina et al., 2011). On the other
hand, it was reported that PGE2 itself induces contrac-
tile response in the rat vas deferens (Amadi et al., 1999).
Meanwhile, another study reported that in rat and
human vas deferens the endogenously synthesized PGs
have no effects on contractility (Patra et al., 1990). More
focused research should be directed toward investigat-
ing the effect of PGE2 on premature ejaculation in
human and rodents.

B. Prostate

Several types of PGs are normally synthesized in
human and rodent prostate and play a major role in
prostate cancer development. It is known that the name
“prostaglandin” is derived from prostate gland, as PGs
were first discovered in this gland and in seminal fluid
(von Euler, 1936; Bergstroem et al., 1963). Human
prostate strips contain thromboxane B2, a stable me-
tabolite of TxA2 (Strittmatter et al., 2011). PGI2 syn-
thase is also expressed in human prostate (Miyata et al.,
1994). In rat prostate, PGE2 is reported to inhibit
electrical field-induced contraction in a concentration-
dependent fashion (Tokanovic et al., 2007).
PGE receptors are expressed in healthy prostate

tissue as well as in prostate cancer. For instance, EP3
receptor is expressed in human healthy prostate
(Kotani et al., 1995), and its expression level is de-
creased, whereas the expression levels of EP2 and EP4
receptors are increased in human prostate cancer
(Huang et al., 2013). The inhibitory effect of PGE2 on
rat prostate contractility may be mediated via EP2 but
not EP3 since EP3. EP1 agonist, sulprostone, failed to

mimic the PGE2-mediated action (Tokanovic et al.,
2010).

AA is found at a low level in tumor specimens obtained
from radical prostatectomy, presumably because of
an increase in its metabolic conversion into PGE2

(Chaudry et al., 1994). PGE2 induces the production
of vascular endothelial growth factor in prostate cancer
cells through EP2 receptor-cAMP pathway, which in
turn promotes angiogenesis (Wang and Klein, 2007).

In this regard, inhibition of PGE2 synthesis may exert
an antitumor effect. It was demonstrated in both human
and rat prostate cancer that metformin is able to inhibit
migration of prostate cancer cells and tumor invasion by
decreasing COX-2 level and PGE2 production (Tong
et al., 2017).

PGI2 is the major component in both benign and
malignant prostate tissues, as shown by using mass
spectrometric analysis. Because its plasma level is
elevated in patients with prostate carcinoma, 6-oxo-
PGF1a, a metabolite of PGI2, may serve as a reliable
diagnostic marker for prostate cancer (Khan et al.,
1982).

C. Corpus Cavernosum

Prostanoids play a significant role in erectile process.
PGE1 is highly effective in management of erectile
dysfunction via induction of corpus cavernosal relaxa-
tion (Hanchanale and Eardley, 2014). PGs may also
inhibit platelet aggregation, modulate collagen synthe-
sis, and regulate fibrosis in corpus cavernosal tissues
(Moreland et al., 1995).

Human corpus cavernosum produces all major PGs,
including PGE2, PGD2, PGF2a, PGI2, and TxA2 (Khan
et al., 1999), and expresses their receptors, like EP1,
EP2, EP3-type I, EP3-type II, EP4, and DP (Brugger
et al., 2008). There is no sufficient data showing their
expression in rodent corpus cavernosal tissues.

In contrast to PGF2a and TxA2, which induce human
penile contraction, PGE1 and PGE2 have been shown to
induce corpus cavernosal relaxation via EP2 and EP4
receptors and subsequently stimulate AC/cAMP path-
way, resulting in stimulation of penile erection (Khan
et al., 1999). It was suggested that PGE1-induced
relaxation of human corpus cavernosal smooth muscle
is related to activation of the large conductance Ca2+-
activated K+ channels, resulting in hyperpolarization
(Lee et al., 1999). Moreover, both PGE1 and PGE2 are
reported to inhibit noradrenaline release in human
penile tissue, suggesting that PG receptors may affect
penile erection by modulating the presynaptic release
of neurotransmitters (Minhas et al., 2001). Interest-
ingly, cholinergic stimulation of human corpus caverno-
sum induces the release of PGI2, whichmay take part in
maintenance of erection (Jeremy et al., 1986).

Similarly, PGE1 stimulates the relaxation of
phenylephrine-precontracted isolated rat corpus caver-
nosum, and both an EP4 agonist and iloprost also exert
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relaxant actions, suggesting pivotal roles of EP4 and IP
receptors in penile function in rat (Bassiouni et al.,
2019). EP4/IP-receptor signaling presumably elicits
a decrease in the intracellular Ca2+ level in corpus
cavernosal smooth muscles via the AC/cAMP pathway,
resulting in corpus cavernosal relaxation (Ricciotti and
FitzGerald, 2011).
PG actions in penile erection aremediated by not only

relaxation of corpus cavernosum but also by tone
regulation of penile arteries. PGE1 induces relaxation
of penile resistance arteries, resulting in an increase in
the blood flow to the corpus cavernosal muscles and
induction of penile erection (Ruiz Rubio et al., 2004).
PGI2 also induces vasodilation of human penile artery
(Khan et al., 1999).
Although PGE1 is considered an effective therapeutic

option formanagement of erectile dysfunction, PGsmay
be involved in some other penile pathologic conditions.
For instance, PGE synthase-1 is reported to be overex-
pressed in human penile intraepithelial neoplasia and
carcinoma (Golijanin et al., 2004).

D. Uterus

Endogenous PGs are known to have an important role
in the normal uterine motility and its regulation during
the menstrual cycle. In human, PGE2, PGF2a, and PGI2
were reported to be released during different phases
(Jensen et al., 1987). However, in rats, PGF2a, PGE2,
and PGD2 were shown to be present in pseudopregnant
rat uterus (Fenwick et al., 1977).
Multiple EP receptors are expressed in human uter-

ine tissue and play roles during pregnancy and labor.
Depending on their signaling pathway, EP receptors
may promote or inhibit the uterine smooth muscle
contraction (Astle et al., 2005). EP3 is suggested to be
the predominant receptor responsible for PGE2-induced
contraction of pregnant human myometrium during
term labor (Arulkumaran et al., 2012). EP3 expression
is reported to be higher in the upper segment of the
uterus, whereas EP2 is more expressed in the lower
segment (Astle et al., 2005). On the other hand, there
are only a few studies showing the dynamic changes in
uterine expression of PG receptors in rodents. PGE2, 17-
phenyl trinor PGE2 (EP1 agonist), sulprostone (EP3 .
EP1 agonist), and misoprostol (EP2/EP3/EP4 agonist)
selectively contract pregnant guinea-pig myometrium,
in which the EP3-receptor activation is more likely
involved since mRNA of EP1 receptor was not found in
this tissue (Terry et al., 2008). Uterine expression levels
of EP1 and EP3 are upregulated in response to estradiol
and progesterone in ovariectomized rat (Blesson et al.,
2012). Another study showed that EP2 expression in the
myometrium is elevated during preterm labor (Molnár
and Hertelendy, 1990). Activation of EP2 is responsible
for the relaxant effect of PGE2 on pregnant rat uterine
(Khan et al., 2008).

During human menstrual cycle, PGE2 induces vaso-
dilation of the endometrial vessels, and PGI2 elicits
relaxation of the smooth muscle, vasodilation of the
myometrial vessels, and inhibition of thrombocyte
aggregation (Jensen et al., 1987). Intrauterine or oral
administration of PGE2 was also shown to inhibit
uterine contractility during active menstrual bleeding
in both normal and dysmenorrheal women (Bygdeman
et al., 1979). During pregnancy, PGI2 was reported to
maintain the uterus in quiescent state during early
pregnancy via inhibition of its contractile activity (Patel
and Challis, 2001). However, during labor, the concen-
trations of PGE2 and PGF2a are augmented in amniotic
fluid, and their metabolites are detectable in maternal
plasma and urine (Novy and Liggins, 1980). Moreover,
PGE2 has been shown to stimulate the fundal myome-
trium in vitro before and during labor (Wikland et al.,
1984). When comparing the oxytocic activities of differ-
ent PGs in pregnant rats, PGE2 and PGI2 elicit themost
potent uterine contraction in vitro, but PGE2 exerts
more potent oxytocic activity (Williams et al., 1979).

Therapeutically, different clinical studies showed
that PGE2, probably by EP3 activation, can be used as
potent oxytocic agent (Gillett, 1972). For examples,
PGE2 is used in the form of vaginal suppositories as
oxytocic for induction of abortion during the mid-
trimester or fetal demise during the third trimester of
pregnancy (Wiley et al., 1989). Misoprostol, EP2/EP3/
EP4 agonist, is used off-label for abortion and induction
of labor (Allen and O’Brien, 2009).

Pathologically, EP3 receptor is an important bio-
marker for endometrial cancer, and blockade of EP3
activation exerts an antitumor effect; EP3 receptor may
serve as a possible therapeutic target for endometrial
cancer patients (Zhu et al., 2017). Furthermore, PGE2

has been shown to stimulate proangiogenic factors in
endometrial adenocarcinoma cells probably via the EP2
receptor, whose expression is elevated in tumor cells
(Sales et al., 2004). Additionally, PGE2 may be involved
in the pathogenesis of cervical cancer because it pro-
motes angiogenesis, proliferation, and invasiveness of
tumor cells and inhibits the antitumor immune
responses (Fitzgerald et al., 2012).

E. Gonads

Previous studies reported the production of PGE2,
PGF2a, and PGI2 as well as expression of IP, EP1–4, and
FP receptors in sertoli cells, the somatic cells of the
testis, in both prepubertal and adult rats (Cooper and
Carpenter, 1987; Ishikawa and Morris, 2006). In addi-
tion, Walch et al. (2003) demonstrated that multiple
EPs as well as FP receptors are expressed in stem cells
of rat Leydig cells and PGE2-EP1 and PGF2a-FP path-
ways stimulate IL-1b expression in these cells. PGE2

may be involved in homeostatic regulation of human
testicular peritubular cell function (Rey-Ares et al.,
2018). Moreover, expression of COX-2 and production
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of PGE2 were detected in rat spermatogenic cells
(Winnall et al., 2007).
Functionally, PGE2 and PGF2a were reported to

decrease the plasma levels of testosterone in male rat
(Saksena et al., 1973). Similarly, intratesticular admin-
istration of PGE2 or PGD2 elicited a significant decrease
in the levels of testosterone in rat testicular tissues
(Yamada et al., 1985). Moreover, expression of COX-1
and COX-2 isozymes is induced in human testicular
cancer tissue, suggesting a potential role of PGs in the
pathogenesis of testicular cancer (Hase et al., 2003).
PGs have been shown to play a remarkable role in

the female reproductive system. PGE1, PGE2, and
PGF2a are detectable in human ovarian follicular
fluid (Pier et al., 2018). Functionally, PGE2 seems to
be important for ovulation because it is mainly synthe-
sizedwithin the follicle and acts as an essential mediator
in the gonadotropin-induced ovulation (Goldberg and
Ramwell, 1975). In rat, upon gonadotropin stimulation,
COX-2 is induced in follicular cells, resulting in the
release of a large amount of PGE2 into the follicular fluid
(Brown and Poyser, 1984). Similarly, expression of the
EP2 receptor is induced in cumulus cells, a type of
granulosa cell surrounding the oocyte, and mice lacking
the EP2 receptor exhibit reduced ovulation and impaired
fertilization (Hizaki et al., 1999). These findings need to
be further examined in humans.
PGE2 also plays a key role in the growth and pro-

gression of ovarian cancer in human, which is supported
by the reports demonstrating the elevated expression of
EP1/EP2 receptors in epithelial ovarian cancer (Rask
et al., 2006). On the other hand, PGI2 inhibits invasion
of human ovarian cancer cells in an IP receptor–
dependent manner (Ahn et al., 2018).

IX. Gastrointestinal Tract

The role of prostaglandins in gastrointestinal tract
and liver physiology has been distinctly established
in rodent models and human using in vivo and in vitro
experiments. In the last decades, the aim of pharma-
cological studies was to determine how EP and IP
receptors are acting in inflammatory process in gut,
stomach, and liver.

A. Prostaglandin E2 and Prostacyclin in Stomach
and Intestine

1. Mucosal Protection. In rodents, endogenous PGI2
and PGE2 are constitutively produced in the stomach
through constitutive COX-1. These two PGs reduce
stomach acid secretion, activate mucosal blood flow, and
facilitate the release of viscous mucus (Amagase et al.,
2014; Takeuchi and Amagase, 2018). In human, the
protective effect of PGE2 analogs, such as 16,16-dimethyl
PGE2 (EP3 . EP2/EP4 agonist) against gastric-acid secre-
tion and gastric-ulcer formation, was shown in the late
1960s (Robert et al., 1968, 1974). Further pharmacological

results obtained in human and dogs proved the involve-
ment of the EP3 receptor in inhibition of gastric-acid
secretion (Robert et al., 1974; Tsai et al., 1995). In mice,
the inhibitory action of prostaglandins (i.e., PGE2 and
PGI2) on gastric-acid production in the damaged stomach
by taurocholate sodium is mediated by activation of EP3
and IP receptors (Nishio et al., 2007; Takeuchi and
Amagase, 2018). Similarly, EP3-receptor activation
in rat is responsible for a reduced production of gastric
acid induced by pentagastrin/histamine stimulations
(Kato et al., 2005). PGI2 and PGE2 play crucial roles
in gastric mucosal defense during induced cold-restraint
stress through IP and EP4, respectively. Gastric
lesions induced by 18 hours of cold-restraint stress
are significantly increased in IP knockout mice com-
pared with WT mice. In WT mice, pretreatment with
iloprost and indomethacin in combination prevented
gastric lesions caused by cold-restraint stress (Amagase
et al., 2014).

NSAIDs are well known to be responsible for gastric
lesions and stomach injuries, and PGE2 can prevent and
reverse these effects (Johansson et al., 1980). Gastric
damage induced by indomethacin or by HCl/ethanol in
rat could be prevented by PGE2 or EP1-receptor agonists
[17-phenyl trinor PGE2 (EP1 agonist) and sulprostone
(EP3 . EP1 agonist)], and this protection disappears in
EP1 knockout mice (Araki et al., 2000; Suzuki et al.,
2001; Takeuchi, 2012, 2014). This EP1-mediated effect is
attributed to the inhibition of gastric hypermotility
induced by NSAIDs (Takeuchi et al., 1986); most of
these experiments have been done with rodents, so
these receptor subtype roles in the gastrointestinal
tract need to be confirmed in human. On the other
hand, the clinical perspective to use EP1-receptor
agonists should be limited to treat NSAID-induced
damage, to stimulate bicarbonate production in the stom-
ach, and to reduce acid reflux in esophagus (Takeuchi
et al., 1997; Suzuki et al., 2001; Takeuchi and Amagase,
2018). Surprisingly, in a recent clinical study (20
patients), the EP1 antagonist ONO-8539 had a posi-
tive effect on acid-induced heartburn in healthy male
subjects with gastroesophageal reflux disease (Kondo
et al., 2017). Because this antagonist would probably
act on symptoms or sensorial responses and not on
the endogenous cause of acid reflux in esophagus,
further investigations are necessary.

Mucus and bicarbonate secretions by epithelial cells
are further physiologic mechanisms involved in pre-
venting/healing gastric lesions. Indomethacin-induced
gastric-mucosa lesions could be prevented by the ad-
ministration of misoprostol (EP2/EP3/EP4 agonist),
resulting in a lower edema average in gastric mucosa
(Cavallini et al., 2006). Furthermore, administration
of an EP4-selective agonist also significantly reduced
indomethacin-induced apoptosis of human gastric-
mucous epithelial cells (Jiang et al., 2009). These
results suggest that EP4-activating reagents may be
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used to prevent NSAID-induced ulcers by maintaining
mucous epithelial-cell survival.
Globally, gastrointestinal cytoprotection induced by

selective EP3/EP4-receptor agonists could be very
promising. On the one hand, these agonists may reduce
gastric-acid secretion and mucosal inflammation (e.g.,
in colitis), and on the other hand, they increase mucus
and bicarbonate productions (Robert et al., 1974;
Takeuchi et al., 1997; Kato et al., 2005; Larsen et al.,
2005; Takeuchi and Amagase, 2018). For this reason,
misoprostol (Cytotec, the EP2/EP3/EP4 agonist), with
its mucoprotective and antiacid properties, is already
an effective treatment of gastrointestinal injury in
clinic, which has been shown to be more effective than
omeprazole (a proton pump inhibitor) (Taha et al., 2018;
Kim et al., 2019). The effect of misoprostol could be
probably through activation of the EP4 receptor. PGE2-
EP4 signaling has also a protective role in colonmucosal
barrier in human and murine models. In EP4 knockout
mice (EP42/2) treated with dextran sodium sulfate
(DSS), a loss of the colon epithelial barrier and the
accumulation of neutrophils and CD4+ T cells in the
colon were observed (Kabashima et al., 2002). In WT
mice, the use of selective EP4-receptor antagonist
(ONO-AE3-208) led to the development of severe
DSS-induced colitis (Kabashima et al., 2002). How-
ever, the administration of selective EP4-receptor
agonist (ONO-AE-734) to wild-type mice suppressed
DSS-induced colitis (Kabashima et al., 2002). In human,
the use of selective EP4-receptor agonist rivenprost
(ONO-4819) in patients with mild-moderate ulcerative
colitis significantly improved histologic scores and re-
duced the disease activity index after 2weeks of therapy
(Nakase et al., 2010).
2. Gastrointestinal Motility and Muscular Tone.

Gastric cytoprotection and lesions are also associated
with gastrointestinal motility (contraction/frequency of
contraction) (Suzuki et al., 2001). In vivo, inhibition of
PGE2 and PGI2 synthesis by indomethacin and many
other NSAIDs in rat stomach or intestine cause in-
creasedmotility (Takeuchi et al., 1986; Takeuchi, 2012).
This increase is reversed by exogenous PGE2 and by
selective EP1 agonist and EP4 agonists whenmotility is
measured in rat stomach and intestine, respectively
(Suzuki et al., 2001; Kunikata et al., 2002; Takeuchi and
Amagase, 2018). The mechanism associated with this
NSAID increased motility in vivo is still unknown,
despite that it was suggested to a central vagal stimu-
lation (Yokotani et al., 1996). In contrast, many other
in vitro studies using isolated gastrointestinal prep-
arations (longitudinal muscle) have shown a contrac-
tile role for exogenous PGE2 in human stomach and
colon (Bassil et al., 2008; Fairbrother et al., 2011), rat
gastric fundus and colon (Abraham et al., 1980;
Sametz et al., 2000; Bassil et al., 2008; Iizuka et al.,
2014), guinea-pig ileum and fundus (Coleman and
Kennedy, 1985; Sametz et al., 2000), and mice ileum

(Fairbrother et al., 2011). Numerous in vitro phar-
macological studies using PGE2 or selective agonists
(e.g., ONO-DI-004 for EP1, ONO-AE-248 for EP3,
sulprostone for EP3 . EP1) and antagonists (e.g.,
EP1A, ONO-8713, SC51089, and SC19220 for EP1,
ONO-AE3-240 and L-798106 for EP3) have deter-
mined that EP1-receptor activation is responsible for
contractions of human longitudinal muscle, whereas
in rodent gastrointestinal muscles it is EP1- and EP3-
receptor activations that are responsible (Coleman
and Kennedy, 1985; Sametz et al., 2000; Fairbrother
et al., 2011; Iizuka et al., 2014). This difference of
effects induced by PGE2 (or mimetics) on motility
versus contraction of gastrointestinal tract in vitro,
dependent or independent of neuronal (central) com-
ponent, and the difference between species need more
experiments.

One possible clinical application of this EP1 receptor
on motility in humans is illustrated by lubiprostone (a
PGE1 derivate and chloride channel type 2 channel
opener) as a treatment of constipation. On rat and
human stomach longitudinal muscle and also on mouse
intestinal circularmuscle, lubiprostonehas a contractile
effect mediated by activation of EP1 receptor. However,
EP4-receptor antagonists reduced the contractile action
of lubiprostone on circular colon muscle in rat and
human (Bassil et al., 2008; Chan and Mashimo, 2013).

In human, the pronounced contractile effect of PGI2
analogs on isolated gastric smooth muscle may contrib-
ute to explaining abdominal pain and cramping associ-
ated with the use of these compounds in clinic. However,
selexipag and its active metabolite MRE-269 (highly
selective IP agonist) had few gastric side effects
(Morrison et al., 2010). In contrast, otherPGI2 analogs, like
iloprost and beraprost that have some affinity for EP3 and
EP1 receptors, induced dose-dependent contraction of rat
gastric fundus. Furthermore, the contraction to iloprost
and beraprost was inhibited by an EP3-receptor antago-
nist ((2E)-3-(3Ј,4Ј-dichlorobiphenyl-2-yl)-N-(2-thienylsul-
fonyl)acrylamide) and EP1-receptor antagonists (SC19220
and SC51322), suggesting that EP1 receptors contrib-
uted to contraction of gastric fundus to iloprost and
beraprost (Morrison et al., 2010).

B. Prostaglandin E2 in Pancreas

The production of PGE2 in Langerhans islets can be
induced by systemic inflammation and hyperglycemia
(Carboneau et al., 2017). Blockade of EP3 byDG-041 (an
EP3 antagonist) increased proliferation of human and
young (but not old) mouse b-cell proliferation, whereas
either activation of EP4 (by its agonist CAY10598) or
blockade of EP4 (by its antagonist L-161,982) had few
effects on both human and mouse b-cell proliferation.
Moreover, EP3 blockade (with DG-041 or L-798106) or
EP4 activation prevented palmitate or cytokine (TNF-a,
IFN-g, and IL-1b)-induced b cell death in both human
andmouse islets, indicating thatEP3andEP4 reciprocally
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regulate b-cell survival (Carboneau et al., 2017; Amior
et al., 2019). In addition, human pancreatic stellate
cells isolated from pancreatic adenocarcinoma samples
and incubated with a selective EP4-receptor antago-
nist (ONO-AE3-208) showed a reduced cell migration
compared with nontreated cells. These findings sug-
gested that PGE2 has a profibrotic effect mediated via
the EP4 receptor (Charo et al., 2013). Thus, the EP4
receptor may be a potential target in pancreatic cancer
therapy.

C. Prostaglandin E2 and Prostacyclin in Liver

The protective role of PGE2 after liver injury has been
reported in both rodent and human livers. In mice liver,
the protective role of PGE2 is mediated by the EP4
receptor as an EP4 agonist dose-dependently protected
against ischemia/reperfusion-induced liver injury
(Kuzumoto et al., 2005). Injection of a high dose (100
mg/kg) of an EP4 agonist, ONO-AE1-329, significantly
reduced the level of alanine aminotransferase in serum,
a marker of liver function, when compared with the
treatment with a low dose (30 mg/kg) of ONO-AE1-329
or vehicle control (Kuzumoto et al., 2005). Thus, PGE2-
EP4 signaling protects against hepatocyte damage after
ischemic/reperfusion injury via EP4. A similar protec-
tive effect of EP4 (using its agonist CAY10598) on liver
ischemia/reperfusion-induced, mitochondria-associated
cell injury was found in the rat (Cai et al., 2020).
The protective effects of the PGE2-EP4 pathway on

hepatocytes may also be due to reduced expression of
proinflammatory cytokines (e.g., IL-1b, TNF-a, and
IFN-g) and enhanced expression of anti-inflammatory
cytokines (e.g., IL-10) (Kuzumoto et al., 2005). For
example, PGI2 andPGE2 inhibit hepatocellular necrosis
through downregulation of TNF-a and IFN-g in mice
liver (Yin et al., 2007). In contrast, Sui and colleagues
(2018) reported that PGE2 and PGI2 increased hepatic
stellate cell proliferation and activity via PKC in LX-2
human hepatic stellate cell line, and enhanced secretion
of proinflammatory cytokine TGF-b1 and PDGF was
observed compared with the control. Treatment of
hepatocarcinoma cells with a selective EP1 agonist
(17-phenyl trinor PGE2) induced cell invasion via the
upregulation of Y box–binding protein 1 expression,
suggesting that PGE2-EP1 signaling promotes hep-
atocarcinoma cells invasion (Zhang et al., 2014).
These findings suggest that the EP1 receptor may be
a therapeutic target to prevent and/or treat hepato-
cellular carcinoma.

X. Bones, Joints, and Skeletal Muscle

A. Osteoblastogenesis and Osteoclastogenesis

Bone mass results from the balance between oste-
oblast and osteoclast activities that are responsible
for bone formation and resorption, respectively. These
cells derive from different stem cells: mesenchymal

for osteoblasts or hematopoietic for osteoclasts. In
vitro studies concerning the control by PGs of these
cell activities were mostly based on their capacity to
modulate osteoblastogenesis or osteoclastogenesis
(Blackwell et al., 2010; Lisowska et al., 2018a).

Cartilage and synovial fluids are other important
components of connective tissues. The physiopathologic
state in cartilage and synovium depends on the cellular
activities of chondrocytes, synovial fibroblasts, and
macrophages. PGs, PGE2 in most cases and PGI2 in
some cases, produced by these cells are surely involved
in the onset and progression of chronic inflammation
processes in cartilage tissues (Li et al., 2009; Nakata
et al., 2018; Loef et al., 2019). These PGs are frequently
responsible for an increase in IL-6, a proinflammatory
cytokine for connective tissue (Hoxha, 2018). However,
most of the current concept regarding the roles of PGs in
bone-related diseases was based on the results in rodent
models, and human relevance should be carefully
confirmed.

The enzymes responsible for PGE2 and PGI2 synthe-
sis (mPGES-1, PGIS) are present in bone and joint
(Molloy et al., 2007; Nakalekha et al., 2010; Tuure et al.,
2019). COX-1/2 and mPGES-1 enzymes have been
shown to be expressed in human and rodent osteo-
blasts (Okiji et al., 1993; Murakami et al., 2000;
Arikawa et al., 2004). The inflammatory stimuli, such
as cytokines (IL-1b, TNF-a, TGF-b) and LPS, usually
result in an increase in COX-2 and/or mPGES-1 expres-
sion in these osteoblast cells (Xu et al., 1997; Kobayashi
et al., 2012; Pecchi et al., 2012). In consequence, PGE2 is
preferentially synthesized among the PGs in osteo-
blasts (Xu et al., 1997). However, PGI2 is also abun-
dantly found in synovial fluid in rheumatoid arthritis,
and its main metabolite, 2,3-dinor-6 keto-PGF1a, was
detected in urine of patients with rheumatoid arthritis
(Hoxha, 2018).

1. Effect of Nonsteroidal Anti-Inflammatory Drugs.
In the in vivo situation, inhibition/deletion of COX-2
reduces pain; however, this enzyme has been suggested
to be responsible for the loss of bone mass or mineral
density both in humans and rodents (Robertson et al.,
2006; Blackwell et al., 2010; Nakata et al., 2018).
Many studies have shown that in humans and rodents
treated with NSAIDs as well as in mice lacking COX-2
gene the bone-healing process after fracture is im-
paired (Pountos et al., 2012; Vuolteenaho et al., 2008).
In a similar way, other anti-inflammatory drugs, such
as glucocorticosteroids (e.g., dexamethasone), are re-
sponsible for impaired osteogenesis and could account
for osteoporosis induction (Weinstein, 2012; Whittier
and Saag, 2016). Treatment of human bone-marrow
stromal cells (BMSCs) in vitro with dexamethasone
induces the expression of the EP2 and EP4 receptors.
In this case, osteoblast differentiation from human
BMSCs is impaired, and PGE2 promotes adipogenesis
instead of osteogenesis (Noack et al., 2015; Mirsaidi
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et al., 2017). Such a differentiation-controlling effect
of PGE2 on BMSC differentiation was not observed in
mouse cells; the adipocyte differentiation is inhibited
by PGE2 (Inazumi et al., 2011; Fujimori et al., 2012).
Interestingly, the beneficit of using NSAIDs to sup-
press the pathologic bone growth and heterotopic
ossification has been shown in human and rat model
(Zhang et al., 2013b; Lisowska et al., 2018b).

B. Osteoblast

Among the PGE2 and PGI2 receptors, it was shown
that the mRNAs for EP4 and IP are expressed in
cultured osteoblasts derived from human trabecular
bone (Sarrazin et al., 2001; Graham et al., 2009).
Similarly, the presence of EP4 receptor has been de-
scribed in rat osteoblasts (Nemoto et al., 1997) and in
mice osteoblast-like cell line, MC3T3-E1 (Kasugai et al.,
1995). In the latter report, the “EP2 receptor” detected
by RT-PCR is in fact the subtype EP4 receptor.
In rodent BMSC or osteoblasts, PGE2 has been shown

to exert pro-osteogenic effects and bone formation (Keila
et al., 2001; Yoshida et al., 2002; Alander andRaisz, 2006;
Ke et al., 2006;Weinreb et al., 2006;Mirsaidi et al., 2017).
In agreement with the previous reports, the involvement
of EP4 receptor in PGE2-induced bone formation was
clearly demonstrated; a selective EP4-receptor agonist
(ONO-4819) enhances the osteoblastogenic activity of
bone morphogenetic proteins (BMPs) in mouse primary
osteoblast (Nakagawa et al., 2007). Among the four PGE2

receptor–deficient mice, only EP4 knockout mice are
unable to restore de novo bone formation via osteoblast
stimulation (Narumiya and FitzGerald, 2001; Yoshida
et al., 2002). Furthermore, knockout of the EP4 gene
specifically in the sensory nerves inhibited bone forma-
tion because of PGE2 produced by osteoblastic cells in
mice, suggesting a crosstalk in which sensory nerves
sense bone density (Chen et al., 2019).
Pharmacological analysis of rat calvaria cells using the

selective agonists (EP1: ONO-DI-004; EP2: ONO-AE1-
259; EP3: ONO-AE-248; EP4: ONO-AE1-437) exhibited
that EP2 and EP4 receptors mediate osteoblastogenic
actions of PGE2 (Minamizaki et al., 2009); however, to
date, no functional EP2 receptor has been identified on
human osteoblasts or osteoclasts. For these reasons, an
EP4-receptor agonist was selected for bone-targeting dual-
action prodrugs: two classes of active agent, the EP4
agonist and a bone-resorption inhibitor (bisphosphonate),
were coupled using metabolically labile linkers. Such
a conjugate was efficient to reverse osteopenia in a rat
model (Arns et al., 2012; Liu et al., 2015). Finally, there is
no strong evidence showing the contribution of other EP
subtypes (EP1 and EP3) in rodent bone formation.

C. Osteoclast

In mouse and human, osteoclast precursors express
EP2 and EP4 mRNA, but their expression levels were
downregulated during differentiation into mature

osteoclasts (Kobayashi et al., 2005; Take et al., 2005).
In contrast, EP1 mRNA is expressed in the mouse
mature osteoclast but not in the human osteoclast;
there may be species difference in EP1 expression.
Moreover, the difference in cell preparations may affect
the expression of EP3 and EP4 receptors in human
osteoclast; EP3/4 mRNA and proteins were detected in
mature osteoclasts extracted from tibias and femurs of
human fetuses (Sarrazin et al., 2004), whereas none of
them were detectable in osteoclasts derived from hu-
man peripheral blood mononuclear cells treated with
receptor activator of NF-kB ligand and GM-CSF (Take
et al., 2005).

It was reported that PGE2 promotes osteoclast differ-
entiation from mouse bone marrow–derived macro-
phages through EP2 and/or EP4 receptor (Kobayashi
et al., 2005), and this result may explain the impaired
osteoclastogenesis detected in EP2 and EP4 knockout
mice (Narumiya and FitzGerald, 2001). In addition,
a pharmacological study using the selective EP-receptor
agonists (EP1: ONO-DI-004; EP2: ONO-AE1-259; EP3:
ONO-AE-248; EP4: ONO-AE1-329) in mouse bone-
marrow cultures showed that activation of EP2 or EP4
receptor promotes the osteoclast formation. This study
also revealed that bone resorption is mostly mediated
by EP4 and partially by EP2 receptor (Suzawa et al.,
2000).

In contrast to the PGE2 actions in mouse osteoclast
formation, Takahashi and coworkers found that PGE2

inhibits osteoclastogenesis from human macrophages
through the activation of EP2 and EP4 receptors (Take
et al., 2005). This report excluded the involvement of
EP3 and/or EP1 receptor(s) since 17-phenyl trinor PGE2

(EP1 agonist) and sulprostone (EP3 . EP1 agonist)
failed to alter the differentiation. In both human and
mouse cases, PGE2-EP2/EP4 pathway regulates osteo-
clastogenesis by modulating receptor activator of NF-
kB ligand signaling (Wani et al., 1999; Kobayashi et al.,
2005; Take et al., 2005; Noack et al., 2015).

Comparedwith PGE2, the involvement of PGI2 in bone
formation has been noted to a lesser extent in literature.
However, IP receptor appears to be expressed in both
human osteoblast and osteoclast (Fortier et al., 2001;
Sarrazin et al., 2001). A selective IP-receptor agonist,
ONO-1301, has been shown in rodent models to promote
BMP-induced bone formation and, more specifically, the
osteoblast differentiation in vitro and the ectopic and
orthotopic bone formation in vivo (Kanayama et al.,
2018).

D. Arthritis

In rodent models of osteoarthritis and rheumatoid
arthritis, in vivo administration of a selective IP-receptor
antagonist or IP-receptor deficiency significantly reduced
the symptoms observed in such chronic joint inflam-
mation (Pulichino et al., 2006). This study indicates
a detrimental role for PGI2 beside PGE2 in arthritis-like
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diseases, in which the concentrations of both PGs are
increased in synovial fluids. These results are in
accordance with another study using multiple mutant
mouse strains and indicating deleterious roles of IP-,
EP2-, and EP4-receptor signaling during collagen-
induced arthritis (Honda et al., 2006). In contrast, the
PG molecule mainly detected in human arthritis is
PGE2, and there are few data showing the involvement
of PGI2 (Sellam and Berenbaum, 2010; Brouwers et al.,
2015) with the exception of two clinical studies (Gao
et al., 2002; Mayerhoefer et al., 2007). These two studies
show an analgesic effect of PGI2 analogs, which is in
opposition to the rodents’ studies as discussed above
(section V. B. 3. Roles of Prostaglandin E2 Receptor 1,
Prostaglandin E2 Receptor 2, Prostaglandin E2 Receptor
4, and Prostacyclin Receptor in Pain Perception).
PGE2 is found in large amounts in the synovial fluid of

patients with rheumatoid arthritis (Trang et al., 1977),
and in mice a major role for the EP4 receptor has been
shown as discussed already in Section II. B. 2. Rheu-
matoid Arthritis. For these reasons, novel approaches
directed toward the EP4 receptor for human and animal
use are being developed for arthritic pain and inflam-
mation, including the EP4 antagonists CR6086 and
Grapiprant (Nagahisa and Okumura, 2017; Caselli
et al., 2018), the partial EP4 agonist GSK726701A
(Healy et al., 2018), and the inhibitor of EP4-receptor
internalization CP-25 (Jia et al., 2019; Han et al., 2020).
Although these different therapeutic approaches ap-
pear on the surface to be paradoxical, an intriguing
hypothesis is that they may all block PGE2-induced
signaling resulting from an internalized EP4 receptor
normally initiated by the PKA-dependent activation of
G-protein–coupled receptor kinase 2 (GRK), which is
interestingly the target for CP-25 (Jia et al., 2019). It is
becoming increasingly evident that internalized recep-
tor complexes (e.g., b-adreneric receptors), by being
retained at various subcellular membrane compart-
ments, can in general lead to a more sustained cellular
response than signaling at the plasma membrane
(Plouffe et al., 2020). Future studies should therefore
be directed toward unraveling this with respect to the
role of EP4 receptors in arthritis and other chronic
inflammatory diseaes.

E. Synovial Fibroblast

In rheumatoid arthritis or osteoarthritis, fibroblast and
macrophages in synovial fluids are also responsible for
PGE2 and PGI2 production (Mathieu et al., 2008; Peng
et al., 2019). In human osteoarthritis synovial fibroblasts,
mRNA for IP receptor and PGIS were detected. Indeed,
stimulation of these cells with an endogenous proarthritis
agent augmented PGI2 synthesis and mRNA levels of the
IP receptor and MMP-13 (Molloy et al., 2007). Such an
increase in MMP-13 expression was suppressed when
fibroblasts were stimulated with an IP-receptor agonist,
iloprost (Molloy et al., 2007). In contrast, PGE2 has been

suggested to exert a proinflammatory action by stim-
ulating triggering receptor expressed onmyeloid cell-1
expression in monocytes via EP2/4 receptors (Peng
et al., 2019). Since EP2 and EP4 mRNA were abun-
dantly expressed in human synovial fibroblasts, PGE2

has been shown to stimulate IL-6 release from fibro-
blasts and to downregulate IFN-g–induced anti-
inflammatory actions, presumably via the EP2/EP4
receptors (Mathieu et al., 2008). An important role for
EP4 receptor could be suggested since polymorphisms
in PTGER4 loci are associated with increased
PTGER4 gene expression in synovial biopsy samples
from patients with spondyloarthritis, and PTGER4 is
a susceptibility gene for ankylosing spondylitis and
RA (Evans et al., 2011; Rodriguez-Rodriguez et al.,
2015).

PGI2-IP and PGE2-EP2/4 pathways appear to play
a proinflammatory role inmouse synovial fibroblasts. In
mouse model of collagen-induced arthritis, IL-6 release
from synovial fibroblasts was significantly increased by
the selective IP-receptor agonist, cicaprost and by either
EP2 or EP4 agonist (Honda et al., 2006).

Globally, in every research field related to bone
formation and cartilage degradation, it could be of
importance to specify or confirm which receptors (mostly
EP2 and/or EP4) are involved. It will be easier
nowadays by using cell type–specific receptor knock-
out mice (conditional mice using Cre-Lox system) or
the recent pharmacological tools, which allow us to
discriminate more clearly between EP4- and EP2-
receptor subtypes: EP4 (e.g., ONO-AE3-240; ONO-
AE3-208) and EP2 (e.g., PF-04418948) antagonists or
selective agonists for the EP2 (e.g., ONO-AE1-259)
and EP4 (e.g., ONO-AE1-329, L-902,688) receptors.
Few studies have used these specific agonists, and it
is more obvious for the antagonists. The use of condi-
tional mice or these pharmacological tools should in-
crease the significance of conclusions.

F. Chondrocyte

Cartilage degradation is the main deleterious effect
in osteoarthritis and rheumatoid arthritis. It occurs
when cartilaginous tissues are submitted to excessive
mechanical loading. As a consequence, human or rodent
chondrocytes produce proinflammatory cytokines (IL-6,
IL-1b, TNF-a…) and PGE2. These mediators are signif-
icantly increased in synovial fluid of arthritic patients (Li
et al., 2009; Lee et al., 2013; Brouwers et al., 2015; Sun
et al., 2019). These molecules and, in particular, PGE2

are responsible for the increase in MMP expression and
activity and thereby destruction of extracellular matri-
ces, leading to sustained proinflammatory responses in
rodents and human (Lee et al., 2013; Wang et al., 2013).

The EP1 receptor is unlikely to participate in such
PGE2-elicited proinflammatory effects since the expres-
sion of subtype EP1 was hardly detected in human
primary cultured chondrocytes, T/C-28a2 chondrocytes,
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and osteoarthritis cartilages (Aoyama et al., 2005;
Wang et al., 2010; Sato et al., 2011). In contrast, EP2
receptorwas reported to be expressed in various types of
human chondrocytes (Li et al., 2009; Wang et al., 2010;
Sato et al., 2011), and contribution of EP4 and EP3
receptors was to a lesser extent described. A detrimen-
tal role for PGE2-EP4 (or EP2)-receptor signaling is
frequently concluded in the development of arthritis.
PGE2 via EP2 receptor stimulates IL-6 production in
human chondrocyte cell lines (T/C28a2) or primary
articular chondrocytes subjected to high fluid shear
stress (Wang et al., 2010; Sato et al., 2011). The
activation of EP2 and EP4 receptors by either PGE2

or butaprost exerted antianabolic actions, resulting
in decreased densities of collagen and aggrecan in
human articular cartilage (Li et al., 2009). Similarly,
in chondrocytes isolated from human knee cartilage,
PGE2-EP4–receptor signaling has been identified to
be responsible for the extracellular matrix degradation
by increasing expression of MMP-13 and A disintegrin
and metalloproteinase with thrombospondin motif 5
(Attur et al., 2008). Although the authors compared the
suppressing potencies of EP2 and EP4 antagonists on
the PGE2 actions, it might be difficult to discriminate
EP4-mediated actions from EP2-mediated ones, since
the antagonists (AH6809 and AH23848) they used in
this studywere themost “classic” compoundswith lower
binding affinities.
Aoyama et al. (2005) found in human cartilage that

EP2-receptor mRNA was the most abundantly detected
and that this tendency was also observed in mouse
cartilage. The authors further showed that EP2 agonist
promotes growth and cAMP content in human articular
chondrocytes (Aoyama et al., 2005). Clark et al. (2009)
demonstrated in mouse sternal chondrocytes that
PGE2 attenuates chondrocyte maturation in a cAMP-
dependent manner, presumably via EP2/EP4 receptor.
The authors also found that PGE2 delays chondrocyte
maturation at least partly by inhibiting BMP/Smad
signaling in rat cell line (Clark et al., 2009). The same
group also demonstrated inmouse primary costosternal
chondrocytes that COX-2-PGE2-EP4–receptor pathway
mediates BMP-2–induced phosphorylation of a tran-
scription factor (activating transcription factor 4), a key
transcription factor regulating bone formation (Li et al.,
2014).

G. Skeletal Muscle

Mouse myoblasts express all PGE2 receptors
(i.e., EP1–4). Before skeletal muscle and myotube
formations, myoblast proliferations were induced by
PGE2 that was mediated by activation of the EP4
receptor since a similar result was found only with
a selective EP4 agonist (CAY10598), and the effect
of PGE2 was blocked by L161,982 (Mo et al., 2015).
Similarly, inmuscle-specific stem cells, theEP4 receptor is
also involved in the expansion and regeneration of skeletal

muscle in mice via cAMP/phospho-CREB pathway and
activation of the transcription factor, Nurr1 (Ho et al.,
2017).

In human, EP3 and EP4 receptors are expressed in
skeletal muscle biopsies of the thigh (vastus lateralis),
and mostly EP4 expression is associated to anti-
inflammation profile in muscle and linked to exercise
training (Lavin et al., 2020). These receptors are also
described and are more expressed in human skeletal
muscle of the leg containingmostly type-1 fibers (soleus)
(Liu et al., 2016).

Finally, in humans or mice, PGE2 and EP4 agonists,
as in many other cells, could have similar role in
skeletal muscle in healthy and pathologic conditions.
In myopathy, a greater level of PGE2 was found in
skeletal muscle samples derived from humans and
mice. The levels of PGE2 were strongly increased in
muscular biopsies of patients with Duchenne dystrophy
ormyotonic dystrophy type 1 in comparisonwith control
patient samples (Jackson et al., 1991; Beaulieu et al.,
2012). This increase was associated with upregulation
of COX-2, mPGES-1, and EP2/4 receptors, which could
be involved in the pathogenesis since inhibition of PGE2

secretion by blocking COX (using aspirin) or mPGES1
(using a short hairpin RNA) in myoblasts reversed
PGE2’s inhibitory effects on myogenic differentiation
(Beaulieu et al., 2012). Similarly, in the animal model of
myopathy (dystrophin-deficientmice), PGE2 production
was also significantly increased after stimulation of leg
skeletal muscle (extensor digitorum longus) with iono-
phore A23187 or electrical stimuli (McArdle et al.,
1991).

XI. Conclusion

The mechanisms whereby PGE2 and PGI2 exert their
pleiotropic actions, once a mystery in physiology, have
been clarified through the biochemical identification
and cDNA cloning of the four EP subtype receptors and
IP receptor. Furthermore, development of highly selec-
tive agonists and antagonists to each EP subtype and
information obtained by studies on mice deficient in
eachEP receptor now provide opportunities to apply our
knowledge to manipulate various PG-mediated patho-
logic processes (Table 3). In most cases, animal models
and studies on human preparations give similar results
with some exceptions. Although gene deletion of mPGES-
1 has extensively been used experimentally to demon-
strate an important role of PGE2 in regulating many
types of inflammatory disease, the interpretation of
studies is confounded by the biosynthesis of PGI2 being
intrinsically linked to the downregulation mPGES-1.
Although EP2 and EP3 receptors have important roles
in human physiology and therapeutics globally, the
number of recent publications during the last 10 years
and the works presented in this review and in Table 3
show increasing interest for research involving the EP4
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or the IP receptors. The activation of these two receptors
is, or could be, an excellent therapeutic target in human
by inducing vasodilatation, bronchodilation, skeletal, and
bone-mass regulation by stimulating anti-inflammatory
cytokine release from innate lymphoid cells or by inhibit-
ing neointimal-, thrombosis-, andmacrophage-associated
inflammation. However, side effects of these activa-
tors are not excluded and could be related to pain
induction. In addition, a number of drugs targeting/
blocking the EP4 receptor are in clinical development
and look promising against osteoarthritis-related
pain, with one already approved for veterinary use.
Finally, human genome-wide association studies are
increasingly providing confirmation of experimental
findings and insight into controversies or unearthing

novel functions of the synthetic pathway of PGE2 and
PGI2 and their associated receptors.
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